The Drosophila melanogaster Prat gene encodes amidophosphoribosyltransferase (PRAT; EC 2.4.2.14), which performs the first step in de novo purine nucleotide synthesis. Prat mutations have a recessive lethal phenotype that is found for other genes encoding enzymes in this pathway. The D. melanogaster genome project has revealed a second gene, CG10078 or Prat2, encoding a protein with 76% amino acid sequence identity with Prat. The two genes map to different arms of chromosome 3 and have different intron/exon organizations, as we confirmed by cDNA sequence analysis of Prat2. With the goal to determine the functional significance of this gene duplication, we isolated and sequenced two PRAT-encoding genes from Drosophila virilis. We find that the two D. virilis genes are orthologous to the two D. melanogaster genes in terms of intron/exon organization, amino acid coding sequence, and 5' noncoding sequence. The absence of introns in both DmelPrat and DvirPrat genes suggests that Prat originated from a retrotransposition of Prat2 and that the gene duplication has been preserved in the two species since their divergence approximately 40 million years ago. Analysis of mRNA expression in development shows that maternal expression, detected in adult ovaries and embryos prior to the onset of zygotic transcription, is present for Prat but not Prat2 in both species. Taken together, these findings support the notion that two PRAT-encoding genes have evolved distinct functions in both Drosophila species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-002-2431-0DOI Listing

Publication Analysis

Top Keywords

gene duplication
12
drosophila melanogaster
8
drosophila virilis
8
amino acid
8
prat-encoding genes
8
prat
7
genes
7
gene
5
drosophila
5
prat purine
4

Similar Publications

To investigate the clinicopathological and genetic features of infantile rhabdomyofibrosarcoma (IRFS) with EGFR kinase domain duplication (EGFR-KDD). The clinical, morphological and immunohistochemical features of three IRFS with EGFR-KDD diagnosed from January 2022 to January 2024 at Department of Pathology, Foshan Traditional Chinese Medicine Hospital, Foshan, China were retrospectively analyzed using PCR or next generation sequencing technique; and related literature was reviewed. There were 1 male and 2 females, aged at presentation ranging from 1 to 4 years.

View Article and Find Full Text PDF

Summary: Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly.

View Article and Find Full Text PDF

Genome-Wide Identification of - () Gene Family and the Potential Function of Under Salt Stress in .

Int J Mol Sci

January 2025

Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.

is an important medicinal herb known as a "natural antibiotic", which has been used in Southeast Asia for thousands of years. The () gene is an important regulatory factor for plant photoperiod flowering and stress response. However, there is currently no detailed research on the genes of .

View Article and Find Full Text PDF

Deletion and duplication in the human 16p11.2 chromosomal region are closely linked to neurodevelopmental disorders, specifically autism spectrum disorder. Data from neuroimaging studies suggest white matter microstructure aberrations across these conditions.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!