Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two fluorimetric HPLC methods are described for the quantification of naphthols, phenanthrols and 1-hydroxypyrene (1-OHP) in urine specimens obtained from male Wistar rats exposed to naphthalene, phenanthrene and pyrene. The polycyclic aromatic hydrocarbons (PAHs) were given intraperitoneally, either alone (1.0 mmol/kg body weight) or as an equimolar mixture (0.33 mmol/kg), using the same dosages for repeated treatments on week 1 and week 2. Between these treatments, PAH-metabolizing activities encoded by aryl hydrocarbon (Ah) receptor-controlled genes were induced in the rats with beta-naphthoflavone (betaNF). Chromatographic separation of five phenanthrols (1-, 2-, 3-, 4-, and 9-isomers) was accomplished using two different RP C-18 columns. Despite selective detection (programmable wavelengths), the quantification limits in the urine ranged widely: 1-OHP (0.18 microg/l)
Download full-text PDF
Source
http://dx.doi.org/10.1007/s00204-003-0436-0 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!