Background/aims: Ciglitazone and other thiazolidinedione compounds are peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands and improve renal function in diabetic nephropathy independent of blood glucose control. Because interstitial fibroblasts and glomerular mesangial cells are important cell types affected in diabetic nephropathy, the major aim of the present study was to examine the effect of ciglitazone on apoptosis and growth of renal interstitial fibroblasts (NRKs) and glomerular mesangial cells (MMCs).

Methods: The effect of ciglitazone on apoptosis and cell growth of cultured NRKs and MMCs was done using DNA fragmentation and MTS cell-growth assays, respectively. The potential role of PPAR-gamma in these two cell types was examined by reporter gene analysis.

Results: Ciglitazone induced caspase-dependent apoptosis of both NRKs and MMCs and caused a significant decrease in cell growth. Other PPAR-gamma ligands also mimicked this effect. Interestingly, ciglitazone did not activate the PPRE-TK-CAT (peroxisome proliferator regulatory element, a thymidine kinase promoter and a chloramphenicol acetyltransferase gene) when transfected into NRKs, suggesting that ciglitazone does not activate the endogenous PPAR-gamma system in NRKs. On the other hand, ciglitazone activated the endogenous PPAR-gamma in MMCs.

Conclusions: Apoptotic and negative growth effects of ciglitazone, in NRKs, are not mediated through PPAR-gamma. The thiazolidinediones have important cellular effects on renal interstitial fibroblasts and glomerular mesangial cells that may be therapeutically useful in non-diabetic renal disease.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000069764DOI Listing

Publication Analysis

Top Keywords

interstitial fibroblasts
16
glomerular mesangial
12
mesangial cells
12
ciglitazone
9
negative growth
8
growth effects
8
effects ciglitazone
8
role ppar-gamma
8
ppar-gamma ligands
8
diabetic nephropathy
8

Similar Publications

Idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung disease have limited treatment options. Fibroblasts are key effector cells that sense matrix stiffness through conformation changes in mechanically sensitive receptors, leading to activation of downstream profibrotic pathways. Here we investigate the role of Piezo2, a mechanosensitive ion channel, in human and mouse lung fibrosis, and its function in myofibroblast differentiation in primary human lung fibroblasts (HLFs).

View Article and Find Full Text PDF

Objective: Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal interstitial lung disease, characterized by excessive extracellular matrix (ECM) secretion that disrupts normal alveolar structure. This study aims to explore the potential molecular mechanisms underlying the promotion of IPF development.

Methods: Firstly, we compared the transcriptome and single-cell sequencing data from lung tissue samples of patients with IPF and healthy individuals.

View Article and Find Full Text PDF

Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.

View Article and Find Full Text PDF

Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses.

Front Immunol

January 2025

Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China.

Immunologically inert or cold tumors pose a substantial challenge to the effectiveness of immunotherapy. The use of oncolytic viruses (OVs) to induce immunogenic cell death (ICD) in tumor cells is a well-established strategy for initiating the cancer immunity cycle (CIC). This process promotes the trafficking and infiltration of CD8+ T cells into tumors, thereby eliciting a tumor-specific immune response.

View Article and Find Full Text PDF

Transcriptome analysis of regenerated dermis stimulated by mechanical stretch.

Gene

January 2025

Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China. Electronic address:

Background: Mechanical stretch is utilized in the process of tissue expansion to promote skin regeneration, which is crucial for wound healing and organ reconstruction purposes. Enlarged dermal area is one of the significant histological characteristics of the expanded skin. However, the underlying biological processes and molecular pathways associated with dermal regeneration triggered by mechanical stretch are still not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!