Various transgenic mouse models of Alzheimer's disease (AD) have been developed that overexpress mutant forms of amyloid precursor protein in an effort to elucidate more fully the potential role of beta-amyloid (A beta) in the etiopathogenesis of the disease. The present study represents the first complete 3D reconstruction of A beta in the hippocampus and entorhinal cortex of PDAPP transgenic mice. A beta deposits were detected by immunostaining and thioflavin fluorescence, and quantified by using high-throughput digital image acquisition and analysis. Quantitative analysis of amyloid load in hippocampal subfields showed a dramatic increase between 12 and 15 months of age, with little or no earlier detectable deposition. Three-dimensional reconstruction in the oldest brains visualized previously unrecognized sheets of A beta coursing through the hippocampus and cerebral cortex. In contrast with previous hypotheses, compact plaques form before significant deposition of diffuse A beta, suggesting that different mechanisms are involved in the deposition of diffuse amyloid and the aggregation into plaques. The dentate gyrus was the hippocampal subfield with the greatest amyloid burden. Sublaminar distribution of A beta in the dentate gyrus correlated most closely with the termination of afferent projections from the lateral entorhinal cortex, mirroring the selective vulnerability of this circuit in human AD. This detailed temporal and spatial analysis of A beta and compact amyloid deposition suggests that specific corticocortical circuits express selective, but late, vulnerability to the pathognomonic markers of amyloid deposition, and can provide a basis for detecting prior vulnerability factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC153642 | PMC |
http://dx.doi.org/10.1073/pnas.0330745100 | DOI Listing |
Chem Biol Drug Des
January 2025
Department of Health Sciences, University of Basilicata, Potenza, Italy.
Alzheimer's disease is a neurodegenerative chronic disease with a severe social and economic impact in the societies, which still lacks an efficient therapy. Several pathophysiological events (β-amyloid [Aβ] deposits, τ-protein aggregation, loss of cholinergic activity, and oxidative stress) occurs in the progression of the disease. Therefore, the search for efficient multi-targeted agents for the treatment of Alzheimer's disease becomes indispensable.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2025
School of Physical Education and Sports Science, South China Normal University, Guangzhou, CHINA.
Purpose: This study aimed to investigate the pathological responses of glial cells at different distances from amyloid plaques and the characteristics of oligodendrocyte precursor cells (OPCs) in perivascular clustering. Additionally, it sought to explore the impact of exercise training on AD pathology, specifically focusing on the modulation of glial responses and the effects of OPC perivascular clustering.
Methods: Three-month-old C57BL/6 and APP/PS1 mice were divided into four groups: wild-type sedentary, wild-type exercise, sedentary AD, and exercise AD groups.
Ann Emerg Med
January 2025
Departments of Emergency Medicine & Population Health, New York University Grossman School of Medicine, New York, NY; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY.
Alzheimer's disease is the neurodegenerative disorder responsible for approximately 60% to 70% of all cases of dementia and is expected to affect 152 million by 2050. Recently, anti-amyloid therapies have been developed and approved by the Food and Drug Administration as disease-modifying treatments given as infusions every 2 to 5 weeks for Alzheimer's disease. Although this is an important milestone in mitigating Alzheimer's disease progression, it is critical for emergency medicine clinicians to understand what anti-amyloid therapies are and how they work to recognize, treat, and mitigate their adverse effects.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Wuhan Third hospital, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuhan 430060, China. Electronic address:
Parkinson's disease (PD), a neurodegenerative disorder without cure, is characterized by the pathological aggregation of α-synuclein (α-Syn) in Lewy bodies. Classic deposition pathway and condensation pathway contribute to α-Syn aggregation, and liquid-liquid phase separation is the driving force for condensate formation, which subsequently undergo liquid-solid phase separation to form toxic fibrils. Traditional Chinese Medicine (TCM) has a long history in treating neurodegenerative disease, herein; we identified chemicals from herbs that inhibit α-Syn aggregation.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Institut de Neurociències (INc), Universitat Autònoma Barcelona, Bellaterra 08193, Spain; Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain. Electronic address:
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-β and Tau protein depositions, with treatments focusing on single proteins have shown limited success due to the complexity of pathways involved. This study explored the potential of chronokines -proteins that modulate aging-related processes- as an alternative therapeutic approach. Specifically, we focused on a novel pleiotropic chimeric protein named HEBE, combining s-KL, sTREM2 and TIMP2, guided by bioinformatic analyses to ensure the preservation of each protein's conformation, crucial for their functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!