The search for small-molecule drugs that act at peptide hormone receptors has resulted in the identification of a wide variety of antagonists. In contrast, the discovery of nonpeptide agonists has been far more elusive. We have used a constitutively active mutant of the cholecystokinin 2 receptor (CCK-2R) as a sensitive screen to detect ligand activity. Functional assessment of structural analogs of the prototype CCK-2R antagonist, L-365,260 [3R-N- (2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl)-N'-(3-methylphenyl)urea], resulted in the identification of a series of agonists. Each of the active molecules is an S enantiomer, whereas the corresponding R stereoisomers have little or no activity. Further in vitro and in vivo assessment at the wild-type receptor indicated that efficacy of the two most active ligands approached that of the endogenous hormone. The function of selected R and S enantiomers was differentially sensitive to a point mutation, N353L, within the putative CCK-2R ligand pocket. The results of this study highlight the potential of constitutively active receptors as drug screening tools and the interdependence of ligand stereochemistry and receptor conformation in defining drug efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154378 | PMC |
http://dx.doi.org/10.1073/pnas.0831223100 | DOI Listing |
Am J Kidney Dis
January 2025
Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
Renal tubular acidoses (RTAs) are a subset of non-anion gap metabolic acidoses that result from complex disturbances in renal acid excretion. Net acid excretion is primarily accomplished through the reclamation of sodium bicarbonate and the buffering of secreted protons with ammonia or dibasic phosphate, all of which require a series of highly complex and coordinated processes along the renal tubule. Flaws in any of these components lead to the development of metabolic acidosis and/or a failure to compensate fully for other systemic acidoses.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s.n., Feira de Santana 44036-900, Bahia, Brazil.
series was created by Barneby in 1991, embracing species diagnosed by their small subshrubby habit and the presence of gland-tipped setae and trimerous flowers. Most species are endemic to Northeastern Brazil, and some possess characters deemed diagnostic which nonetheless overlap, making species identification difficult. Our study aimed to test species circumscriptions and sets of characters that could be applied to unequivocally distinguish the species.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Türkiye.
The plant . is employed in both raw and cooked forms for the treatment of gastric diseases, as an expectorant, and for the treatment of warts and the enhancement of urine. A review of the scientific literature revealed no studies investigating the effect of (MN) water extract on gastric diseases.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
With the advent of the 5G era, high-precision localization based on mobile communication networks has become a research hotspot, playing an important role in indoor emergency rescue in shopping malls, smart factory management and tracking, as well as precision marketing. However, in complex environments, non-line-of-sight (NLOS) propagation reduces the measurement accuracy of 5G signals, causing large deviations in position solving. In order to obtain high-precision position information, it is necessary to recognize the propagation state of the signal before distance measurement or angle measurement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!