Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The IGF binding proteins (IGFBPs) regulate the mitogenic effects of IGFs in the extracellular environment. Several members of this family, including IGFBP-3, also appear to have IGF-independent effects on cell function. For IGFBP-3 and IGFBP-5, both of which are translocated to the cell nuclei, these effects may be related to their putative nuclear actions. Because reversible phosphorylation is an important mechanism for controlling nuclear protein import, we have examined the effect of phosphorylating IGFBP-3 with a number of serine/threonine protein kinases on its nuclear import. Phosphorylation of IGFBP-3 by the double-stranded DNA-dependent protein kinase (DNA-PK) increased both the nuclear import of IGFBP-3 and the binding of IGFBP-3 to components within the nucleus compared with nonphosphorylated IGFBP-3. However, there was no difference in the binding of the nuclear transport factor, importin beta, to nonphosphorylated and phosphorylated IGFBP-3. The ability of the DNA-PK phosphoform of IGFBP-3 to bind IGFs was severely attenuated, and in contrast to nonphosphorylated IGFBP-3, the DNA-PK phosphoform was unable to transport IGF-I to the nucleus. Furthermore, IGFBP-3 was phosphorylated by DNA-PK when complexed to IGF-I causing the phosphoform to release IGF-I. Together, these results suggest that when IGF-I is cotransported into the nucleus by IGFBP-3, phosphorylation of IGFBP-3 by nuclear DNA-PK provides a means for releasing bound IGF-I and creating a phosphoform of IGFBP-3 with increased affinity for nuclear components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2002-220798 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!