Searching for an optimum solution to the Bangladesh arsenic crisis.

Soc Sci Med

National Centre for Epidemiology and Population Health, Australian National University, ACT 0200, Canberra, Australia.

Published: May 2003

Searching for an optimum solution to the Bangladesh arsenic crisis: Thirty years ago Bangladesh experienced very high levels of infant and child mortality, much of it due to water-borne disease in deltaic conditions where surface water was highly polluted. In what appeared to be one of the great public health achievements, 95% of the population were converted to drinking bacteria-free tubewell water from underground aquifers. Recently, it has been shown that perhaps 20% of this water is arsenic contaminated and alternatives to tubewell water have been sought. This paper reports on two national surveys collaboratively carried out in 2000 by the Health Transition Centre, Australian National University and Mitra and Associates, Dhaka: A census of tubewells and a household survey of tubewell use and arseniosis. The study found that the tubewell revolution has been promoted not only by health considerations but also by the demand for a household water facility and the desire by women to reduce workloads associated with using surface water. Because of this, and because the population had absorbed the message about safe tubewell water, it is argued that the movement away from the use of tubewell water should be as limited as possible, even if this means using safe tubewells which are often found in the neighbourhood. To enable such a move the most urgent need is not changing the source of water but comprehensive national water testing providing essential information to households about which wells are safe and which are not.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0277-9536(02)00203-4DOI Listing

Publication Analysis

Top Keywords

tubewell water
16
water
10
searching optimum
8
optimum solution
8
solution bangladesh
8
bangladesh arsenic
8
arsenic crisis
8
surface water
8
tubewell
6
crisis searching
4

Similar Publications

This study assessed the water suitability for various purposes, evaluated heavy metal contamination and soil fertility, and investigated seasonal variations in water and soil parameters near the Barapukuria coal mine in Bangladesh. A total of nine sampling locations were selected, resulting in 18 samples (12 water and 6 soil) collected during the summer and winter seasons. The water samples were analyzed at the Environmental Engineering Laboratory, while the soil samples were analyzed at the Soil Resource Development Institute (SRDI).

View Article and Find Full Text PDF
Article Synopsis
  • Arsenic contamination is a significant public health issue globally, and bacteria like Achromobacter aegrifaciens can help mitigate this by converting toxic arsenite (AsIII) into less harmful arsenate (AsV).
  • Researchers analyzed two A. aegrifaciens strains from arsenic-laden water and soil in Bangladesh using whole genome sequencing and found that both strains exhibit arsenic oxidation capabilities and share similar gene clusters for arsenic detoxification and heavy metal resistance.
  • The genomic analyses revealed that these strains, while distinct from other strains globally, show close evolutionary relationships with each other, indicating their potential in bioremediation efforts in arsenic-contaminated areas.
View Article and Find Full Text PDF
Article Synopsis
  • High levels of arsenic (As) and fluoride (F), along with microbial pathogens, are a significant public health risk in semiarid regions, affecting over 240 million people, including those in Pakistan.
  • Groundwater around coal mines in Quetta shows concerning concentrations of As (0.2-16.6 µg/L) and F (0.4-18.5 mg/L), with mining areas experiencing even higher levels and various geochemical factors influencing these contaminants.
  • A health risk assessment indicates that over 64% of groundwater samples exceed WHO guidelines for As and F, posing greater carcinogenic and non-carcinogenic risks to children, highlighting a critical need for improved water quality and management.
View Article and Find Full Text PDF
Article Synopsis
  • Groundwater is getting low, which is bad for food and farmers' jobs.
  • Farmers get paid extra for crops, but this has caused them to use too much water, especially for crops like rice and wheat.
  • In some areas, the way these payments are set up is hurting the environment and may cause big problems in the future.
View Article and Find Full Text PDF

We report the draft genome of strain BAW48, a bacterium with a genome size of 6,877,653 bp. This genome comprises gene clusters for arsenic conversion, such as arsenic resistance (), arsenite oxidation (), and arsenate reduction (), along with genes for heavy metal and antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!