Background: After intravenous delivery of the adenoviral vector into rats or mice, 95-99% of the encoded protein is produced in the hepatocytes. We observed, as have others, that the early expression levels of the vector encoded protein vary, greatly, within a species, from one animal strain to another. This study was initiated to determine the molecular mechanism causing the difference: hepatic transfection, transcription or translation. For this purpose different doses of Ad5 luciferase and Ad5 LacZ were intravenously injected into Brown Norway rats and Wag/Rij rats, two strains that differ by a factor of 10 in encoded protein levels. The proportion of LacZ positive hepatocytes, the adenoviral DNA, specific transgenic RNA and luciferase protein were compared in the two strains.

Results: The number of transduced hepatocytes and the amounts of Ad5 DNA in the livers was similar in both strains, whereas the Brown Norway rats produced 8 to 10 times more of both vector encoded proteins and of transgene mRNA than the Wag/Rij rats.

Conclusions: It is concluded that the difference between strains in vector encoded protein expression is due to different transcriptional events. No evidence was obtained to suggest that the differences are related to liver damage influenced by vector toxicity or immune reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC155537PMC
http://dx.doi.org/10.1186/1471-2199-4-4DOI Listing

Publication Analysis

Top Keywords

encoded protein
16
vector encoded
12
brown norway
8
norway rats
8
vector
5
encoded
5
protein
5
genetic heterogeneity
4
heterogeneity response
4
response adenovirus
4

Similar Publications

The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.

View Article and Find Full Text PDF

Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.

View Article and Find Full Text PDF

Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation.

View Article and Find Full Text PDF

Mitral Valve Prolapse Caused by TLL1 Gain-of-Function Mutation.

Can J Cardiol

January 2025

The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel; Genetics Institute, Soroka University Medical Center, Be'er Sheva, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel. Electronic address:

Background: Mitral valve prolapse (MVP) is a common cardiac valvular anomaly that can be caused by mutations in genes of various biological pathways. Individuals of three generations of a kindred presented with apparently dominant heredity of isolated MVP.

Methods: Clinical evaluation and echocardiography for all complying family members (n=13).

View Article and Find Full Text PDF

The common murine retroviral integration site activating Hhex marks a distal regulatory enhancer co-opted in human Early T-cell precursor leukemia.

J Biol Chem

January 2025

Indiana University School of Medicine, Indianapolis, Indiana; IU Simon Comprehensive Cancer Center, Indianapolis, Indiana; R.L. Roudebush Indianapolis VA Medical Center, Indianapolis, Indiana. Electronic address:

The Hhex gene encodes a transcription factor that is important for both embryonic and post-natal development, especially of hematopoietic tissues. Hhex is one of the most common sites of retroviral integration in mouse models. We found the most common integrations in AKXD (recombinant inbred strains) T-ALLs occur 57-61kb 3' of Hhex and activate Hhex gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!