Formation of aroma compounds from ribose and cysteine during the Maillard reaction.

J Agric Food Chem

Nestlé Research Center, Vers-chez-les-Blanc, P.O. Box 44, CH-1000 Lausanne 26, Switzerland.

Published: April 2003

The headspace volatiles produced from a phosphate-buffered solution (pH 5) of cysteine and a 1 + 1 mixture of ribose and [(13)C(5)]ribose, heated at 95 degrees C for 4 h, were examined by headspace SPME in combination with GC-MS. MS data indicated that fragmentation of ribose did not play a significant role in the formation of the sulfur aroma compounds 2-methyl-3-furanthiol, 2-furfurylthiol, and 3-mercapto-2-pentanone in which the carbon skeleton of ribose remained intact. The methylfuran moiety of 2-methyl-3-(methylthio)furan originated from ribose, whereas the methylthio carbon atoms came partly from ribose and partly from cysteine. In 3-mercapto-2-butanone one carbon unit was split from the ribose chain. On the other hand, all carbon atoms in 3-thiophenethiol stemmed from cysteine. In another trial cysteine, 4-hydroxy-5-methyl-3(2H)-furanone and [(13)C(5)]ribose were reacted under the same conditions. The resulting 2-methyl-3-furanthiol was mainly (13)C(5)-labeled, suggesting that it stems from ribose and that 4-hydroxy-5-methyl-3(2H)-furanone is unimportant as an intermediate. Whereas 2-mercapto-3-pentanone was found unlabeled and hence originated from 4-hydroxy-5-methyl-3(2H)-furanone, its isomer 3-mercapto-2-pentanone was formed from both 4-hydroxy-5-methyl-3(2H)-furanone and ribose. A new reaction pathway from ribose via its 1,4-dideoxyosone is proposed, which explains both the formation of 2-methyl-3-furanthiol without 4-hydroxy-5-methyl-3(2H)-furanone as an intermediate and a new way to form 3-mercapto-2-pentanone.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf026123fDOI Listing

Publication Analysis

Top Keywords

ribose
10
aroma compounds
8
carbon atoms
8
cysteine
5
4-hydroxy-5-methyl-32h-furanone
5
formation aroma
4
compounds ribose
4
ribose cysteine
4
cysteine maillard
4
maillard reaction
4

Similar Publications

The exterior surface of the human pathogen is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different sugars that can be modified with various molecular decorations. In the HS:2 serotype from strain NCTC 11168, the repeating unit within the CPS is composed of d-ribose, -acetyl-d-galactosamine, and a d-glucuronic acid that is further amidated with either serinol or ethanolamine. The d-glucuronic acid moiety is also decorated with d-glycero-l-gluco-heptose.

View Article and Find Full Text PDF

is the leading cause of food poisoning in Europe and North America. The exterior surface of this bacterium is encased by a capsular polysaccharide that is attached to a diacyl glycerol phosphate anchor via a poly-Kdo (3-deoxy-d--oct-2-ulosinic acid) linker. In the HS:2 serotype of NCTC 11168, the repeating trisaccharide consists of d-ribose, -acetyl-d-glucosamine, and d-glucuronate.

View Article and Find Full Text PDF

Background: The reported benefit of poly (ADP-ribose) polymerase inhibitor (PARPi) maintenance in patients with newly diagnosed and platinum (Pt)-sensitive recurrent ovarian cancer (OC) included in randomized clinical trials needs to be corroborated in a less selected population.

Objective: The aim is to increase the evidence on niraparib in a real-world setting.

Methods: This is a retrospective observational study including women with platinum-sensitive relapsed high-grade serous OC who started niraparib maintenance between August 2019 (marketing data, Spain) and May 2022.

View Article and Find Full Text PDF

The Role of Autophagy in Copper-Induced Apoptosis and Developmental Neurotoxicity in SH-SY5Y Cells.

Toxics

January 2025

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.

Copper (Cu) is a global environmental pollutant that poses a serious threat to humans and ecosystems. Copper induces developmental neurotoxicity, but the underlying molecular mechanisms are unknown. Neurons are nonrenewable, and they are unable to mitigate the excessive accumulation of pathological proteins and organelles in cells, which can be ameliorated by autophagic degradation.

View Article and Find Full Text PDF

Decoding NAD+ Metabolism in COVID-19: Implications for Immune Modulation and Therapy.

Vaccines (Basel)

December 2024

Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China.

The persistent threat of COVID-19, particularly with the emergence of new variants, underscores the urgency for innovative therapeutic strategies beyond conventional antiviral treatments. Current immunotherapies, including IL-6/IL-6R monoclonal antibodies and JAK inhibitors, exhibit suboptimal efficacy, necessitating alternative approaches. Our review delves into the significance of NAD+ metabolism in COVID-19 pathology, marked by decreased NAD+ levels and upregulated NAD+-consuming enzymes such as CD38 and poly (ADP-ribose) polymerases (PARPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!