A problem has arisen in using chiral shift reagents (CSR) and chiral solvating agents (CSA) to determine meso and racemic forms of diastereoisomers in which the stereogenic centers of the molecules are separated by achiral spacers. It is found that NMR signals of both meso and racemic forms of diastereoisomers may exhibit doubling on addition of CSR/CSA, which means that unequivocal assignments cannot be made without characterizing the effects for separate meso and racemic forms; this is particularly important for additions of CSR/CSA at relatively low concentrations, which always result in the splitting of some NMR signals of diastereoisomers. The phenomenon is demonstrated in the (31)P NMR spectra of meso and racemic forms of three spermine-bridged gem-disubstituted cyclotriphosphazatrienes, 1a-c, and compared with analogous achiral molecules, the per-substituted spermine-bridged cyclotriphosphazatrienes 2a-d. As expected, only one set of (31)P NMR signals was observed for the achiral compounds 2a-d, even on addition of CSA. Two sets of (31)P NMR ABX multiplets corresponding to meso and racemic diastereoisomers were observed for compounds 1a-c; on addition of CSA, the signals of at least one of the multiplets for each compound separated into more than the expected groups of three lines with an intensity distribution of 2:1:1. To understand this phenomenon, the meso and racemic forms of 1a and 1b and the meso form of 1c have been separated and characterized by X-ray crystallography. On addition of CSA to the racemic forms of 1a and 1b, the (31)P NMR spectrum shows the expected doubling of signals, but, unexpectedly, the same is observed for each of the meso forms of 1a-c. Analogous results using both CSA and CSR have been obtained for the meso and racemic forms of the diastereoisomeric piperazine-bridged macrocyclic-phosphazene compound, 3, whereas no effect was observed for the two meso forms of the doubly bridged macrocyclic-phosphazene compound 4. The phenomenon of doubling of the (31)P NMR signals of the meso form of singly bridged cyclotriphosphazatrienes, 1a-c and 3, is explained by consideration of the equilibrium in solution of independent complexation of a chiral ligand with molecules that have two chiral cyclophosphazene moieties separated by an achiral spacer group. The results show that the stereogenicity of such diastereoisomeric molecules in solution cannot be characterized unequivocally by NMR measurements on addition of either CSR or CSA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja028871rDOI Listing

Publication Analysis

Top Keywords

meso racemic
28
racemic forms
28
31p nmr
20
nmr signals
16
meso
12
addition csa
12
forms
9
stereogenic centers
8
chiral shift
8
chiral solvating
8

Similar Publications

Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.

Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.

View Article and Find Full Text PDF

The rotational spectra of a mixture of 2,4-pentanediol (PDL) isomers, comprising both the meso isomers [(2R, 4S) and (2S, 4R)] and the racemic isomers [(2R, 4R) and (2S, 4S)], were recorded using a chirped-pulse Fourier transform microwave spectrometer coupled to a supersonic jet expansion. The conformational landscapes of meso- and racemic-PDL were examined using the Conformer-Rotamer Ensemble Sampling Tool and high-level quantum chemical calculations, generating 26 and 25 conformers, respectively. Five sets of rotational transitions were observed and assigned, with two attributed to meso-PDL and the remaining three attributed to racemic-PDL.

View Article and Find Full Text PDF

Solvent-Directed Social Chiral Self-Sorting in PdL Coordination Cages.

J Am Chem Soc

November 2024

Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Str. 6, 44227 Dortmund, Germany.

A family of Pd cages prepared from ligands based on an axially chiral diamino-[1,1'-biazulene] motif (serving as a unique azulene-based surrogate of the ubiquitous BINOL moiety) is reported. We show that preparing a cage starting from the racemate of a shorter bis-monodentate ligand derivative, equipped with pyridine donor groups, leads to integrative ("social") chiral self-sorting, exclusively yielding the product, but only in a selection of solvents. This phenomenon is driven by individual solvent molecules acting as hydrogen bonding tethers between the amino groups of neighboring ligands, thereby locking the final coordination cage in a single isomeric form.

View Article and Find Full Text PDF

The reactions of monospirocyclotriphosphazenes ( and ) with -methyl-1,3-diaminopropane gave unsymmetrical -( and ) and -( and ) dispirocyclotriphosphazenes. Trans-cis-trans () ( and ), cis-cis-cis () ( and ), trans-trans-cis () ( and ), and cis-trans-trans () () trispirocyclotriphosphazenes were obtained from the reactions of and and and with -methyl-1,3-diaminopropane. -Dispirocyclotriphosphazenes ( and ) exist as "pseudomesoracemates", while -dispirocyclotriphosphazenes ( and ) are in "racemates".

View Article and Find Full Text PDF

Aluminum Alkyl Induced Isomerization of Group IV meso Metallocene Complexes.

Angew Chem Int Ed Engl

September 2024

Wacker-Lehrstuhl für Makromolekulare Chemie Catalysis Research Center, Technische Universität München TUM School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching Garching bei München, Germany.

The synthesis of group IV metallocene precatalysts for the polymerization of propylene generally yields two different isomers: The racemic isomer that produces isotactic polypropylene (iPP) and the meso isomer that produces atactic polypropylene (aPP). Due to its poor physical properties, aPP has very limited applications. To avoid obtaining blends of both polymers and thus diminish the mechanical and thermal properties of iPP, the meso metallocene complexes need to be separated from the racemic ones tediously-rendering the metallocene-based polymerization of propylene industrially far less attractive than the Ziegler/Natta process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!