Background And Objectives: Low energy laser therapy has been shown to enhance mechanical strength of healing medial collateral ligament (MCL) in rats. The present study investigated its effects on the ultrastructural morphology and collagen fibril profile of healing MCL in rats.

Study Design/materials And Methods: Thirty-two mature male Sprague-Dawley (SD) rats were used. Twenty-four underwent surgical transection to their right MCLs and eight received only skin wound. Immediately after surgery, eight of the MCL transected rats were treated with a single dose of laser therapy at 63.2 J cm(-2), eight were treated with a single dose of laser therapy at 31.6 J cm(-2), the rest had no treatment and served as control. At 3 and 6 weeks after surgery, the MCLs were harvested and examined with electron microscopy for collagen fibril size, distribution, and alignment.

Results: Significant differences (P < 0.001) were found in fibril diameters from the same anatomical site and time period among different groups. The mass-averaged diameters of the laser-treated (64.99-186.29 nm) and sham (64.74-204.34 nm) groups were larger than the control group (58.66-85.89 nm). The collagen fibrils occupied 42.55-59.78, 42.63-53.94, and 36.92-71.64% of the total cross-sectional areas in the laser-treated, control and sham groups, respectively. Mode obliquity was 0.53-0.84 among the three groups.

Conclusions: Single application of low energy laser therapy increases the collagen fibril size of healing MCLs in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.10161DOI Listing

Publication Analysis

Top Keywords

laser therapy
16
collagen fibril
12
ultrastructural morphology
8
medial collateral
8
collateral ligament
8
low energy
8
energy laser
8
treated single
8
single dose
8
dose laser
8

Similar Publications

The use of hypoxia-activated prodrugs is a promising strategy to address the limitations of photodynamic therapy (PDT) caused by a hypoxic tumor microenvironment. However, the controlled release of these hypoxia-activated prodrugs during PDT remains a challenge. In this study, we present a metal-organic framework (MOF) with a core-shell structure that can achieve a high PDT efficacy and on-demand release of hypoxia-activated prodrugs (AQ4N) for hypoxic tumor therapy.

View Article and Find Full Text PDF

Objective: Evaluate the influence of photobiomodulation in a model of oral carcinogenesis induced by 4-nitroquinoline-n-oxide (4-NQO).

Subjective: Ninety-six Swiss mice received topical application of 1% 4-NQO on tongue dorsum, for 20 weeks. The tongue was subjected to photobiomodulation with red (71.

View Article and Find Full Text PDF

Background: Microcirculation is the essential link between macrocirculation and cellular metabolism.

Objectives: To test our hypotheses that microcirculation variables will show a heterogeneous flow pattern during experimental endotoxaemia, and that fluid therapy and noradrenaline (NA) infusion will normalise altered microcirculation variables.

Study Design: In vivo experiments.

View Article and Find Full Text PDF

Multi-pathway oxidative stress amplification via controllably targeted nanomaterials for photoimmunotherapy of tumors.

J Nanobiotechnology

January 2025

Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.

Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment.

View Article and Find Full Text PDF

Anti-proliferative and photodynamic activities of Senna didymobotrya (Fresen.) leaf alkaloid-rich extracts against breast cancer cells.

BMC Complement Med Ther

January 2025

Laser Research Centre, Faculty of Health Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg, 2028, South Africa.

Background: Amongst all neoplastic diseases, breast cancer represents a major cause of death among the female population in developed and developing countries. Since alkaloid drugs are commonly used in chemotherapy to manage this disease, this study investigated the anti-proliferative effectiveness of alkaloid-rich fractions of Senna didymobotrya leaves only and with laser irradiation against MCF-7 breast cancer cells.

Method And Materials: A powdered sample of the plant leaves was extracted with 50% ethanol, filtered and their pH was adjusted with acid and base solution followed by partitioning with chloroform and ethyl acetate solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!