Leeches Hirudo medicinalis were exposed to either artificial pond water (APW; 1 mM NaCl) or to high-salinity conditions (HS; 200 mM NaCl) for several days. The aim of the study was to assess whether transepithelial ion conductances in their dorsal integuments were affected by this long-term acclimation. In voltage-clamp experiments using Ussing-type chambers, the transepithelial potential V(T) was clamped to 0 mV, and amiloride-sensitive currents (I(ami)) and total Na(+) transport (I(Na)) were determined. Apical Ca(2+)-free conditions strongly increased I(ami) to a similar magnitude in both differently acclimated integuments. Apical application of the lanthanide gadolinium <0.1 mM decreased the short-circuit current (I(sc)). In contrast, higher concentrations up to 10 mM Gd(3+) upregulated I(sc) by an additional 90% in APW integuments and by an additional 300% in HS integuments. This Gd(3+) effect was due to a doubling of I(Na) in APW and a more than sixfold increase of I(Na) in HS integuments. In summary, the macroscopic electrophysiological variables, including I(Na), were generally not affected by long-term exposure to high salinity. However, the presence of Gd(3+)-sensitive Na(+) conductances or regulating structures were greatly upregulated during HS acclimation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/367943 | DOI Listing |
J Hazard Mater
January 2025
MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
Vanadium oxides nanoparticles (VO-NPs) as emerging functional materials are widely applied in high-technology industries. However, their environmental behaviors remain largely known. In this study, the migration of three common VO-NPs (VO VO, and VO) in saturated porous media has been investigated.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA.
The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA.
Background/objectives: Cocaine use disorder is an intersecting issue in populations with HIV-1, further exacerbating the clinical course of the disease and contributing to neurotoxicity and neuroinflammation. Cocaine and HIV neurotoxins play roles in neuronal damage during neuroHIV progression by disrupting glutamate homeostasis in the brain. Even with combined antiretroviral therapy (cART), HIV-1 Nef, an early viral protein expressed in approximately 1% of infected astrocytes, remains a key neurotoxin.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 19, 040 01 Košice, Slovakia.
Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!