Purpose: We tested the polyamine analog SL-11093 (3,8,13,18-tetraaza-10,11-[(E)-1,2-cyclopropyl]eicosane tetrahydrochloride) as an effective chemotherapeutic agent against human prostate cancer grown in nude mice.
Methods: NCr-nu mice grafted with DU-145 human prostate tumor cells were treated i.p. with SL-11093 at 50 mg/kg q1dx5 for either three or five cycles separated by intervals of about 10-15 days.
Results: In treated animals, tumor growth remained arrested for up to 100 days with minimal animal weight loss. None of the animals died during the treatment and in one experiment two out of six animals showed no palpable tumor. SL-11093 was readily taken up by the tumors, where its levels remained elevated for about 48 h after the end of drug administration. In liver and in kidney, SL-11093 (a (alpha)N,(omega)N-bisethyl derivative) was oxidatively N-deethylated predominantly to its monoethyl and di-deethyl derivatives. In time, the monoethyl derivative was further dealkylated, with a loss of an aminobutyl chain to form an aminomethyl cyclopropyl derivative. In tumor (and in lung), N-dealkylation reactions were less evident.
Conclusion: SL-11093 is an effective chemotherapeutic agent against a human prostate tumor xenograft grown in nude mice. The drug accumulation and slow metabolism in tumor compared to other tissues would most likely reduce systemic toxicity of the drug and contribute to a larger therapeutic window for SL-11093 as compared to other cytotoxic polyamine analogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-003-0598-8 | DOI Listing |
PLoS One
January 2025
Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom.
Introduction: Undiagnosed chronic disease has serious health consequences, and variation in rates of underdiagnosis between populations can contribute to health inequalities. We aimed to estimate the level of undiagnosed disease of 11 common conditions and its variation across sociodemographic characteristics and regions in England.
Methods: We used linked primary care, hospital and mortality data on approximately 1.
Langenbecks Arch Surg
January 2025
Department for the Promotion of Medical Device Innovation, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
Purpose: Assessing surgical skills is vital for training surgeons, but creating objective, automated evaluation systems is challenging, especially in robotic surgery. Surgical procedures generally involve dissection and exposure (D/E), and their duration and proportion can be used for skill assessment. This study aimed to develop an AI model to acquire D/E parameters in robot-assisted radical prostatectomy (RARP) and verify if these parameters could distinguish between novice and expert surgeons.
View Article and Find Full Text PDFPlatelets
December 2025
Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA.
Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs.
View Article and Find Full Text PDFIowa Orthop J
January 2025
Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York, USA.
Background: There is a currently limited data regarding cancer risk in Orthopaedic Surgeons. This study summarizes a survey on cancer prevalence in orthopaedic surgeons.
Methods: A cancer prevalence survey was emailed to all 23,370 members of the American Academy of Orthopaedic Surgeons (AAOS).
Eur Urol Open Sci
January 2025
Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA.
Multiparametric magnetic resonance imaging (mpMRI) is strongly recommended by current clinical guidelines for improved detection of clinically significant prostate cancer (csPCa). However, the major limitations are the need for intravenous (IV) contrast and dependence on reader expertise. Efforts to address these issues include use of biparametric magnetic resonance imaging (bpMRI) and advanced, quantitative magnetic resonance imaging (MRI) techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!