Background And Purpose: Blood flow dynamics are thought to play an important role in the pathogenesis and treatment of intracranial aneurysms; however, hemodynamic quantities of interest are difficult to measure in vivo. This study shows that computational fluid dynamics (CFD) combined with computed rotational angiography can provide such hemodynamic information in a patient-specific and prospective manner.
Methods: A 58-year-old woman presented with partial right IIIrd cranial nerve palsy due to a giant carotid-posterior communicating artery aneurysm that was subsequently coiled. Computed rotational angiography provided high resolution volumetric image data from which the lumen geometry was extracted. This and a representative flow rate waveform were provided as boundary conditions for finite element CFD simulation of the 3D pulsatile velocity field.
Results: CFD analysis revealed high speed flow entering the aneurysm at the proximal and distal ends of the neck, promoting the formation of both persistent and transient vortices within the aneurysm sac. This produced dynamic patterns of elevated and oscillatory wall shear stresses distal to the neck and along the sidewalls of the aneurysm. These hemodynamic features were consistent with patterns of contrast agent wash-in during cine angiography and with the configuration of coil compaction observed at 6-month follow-up.
Conclusion: Anatomic realism of lumen geometry and flow pulsatility is essential for elucidating the patient-specific nature of aneurysm hemodynamics. Such image-based CFD analysis may be used to provide key hemodynamic information for prospective studies of aneurysm growth and rupture or to predict the response of an individual aneurysm to therapeutic options.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148673 | PMC |
J Chem Phys
January 2025
Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.
Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.
View Article and Find Full Text PDFProtein Sci
February 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
We have recently demonstrated a novel anaerobic NADH-dependent haem breakdown reaction, which is carried out by a range of haemoproteins. The Yersinia enterocolitica protein, HemS, is the focus of further research presented in the current paper. Using conventional experimental methods, bioinformatics, and energy landscape theory (ELT), we provide new insight into the mechanism of the novel breakdown process.
View Article and Find Full Text PDFCurr Protoc
January 2025
Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
Understanding the dynamic pathophysiology of diseases in the lung, such as asthma and chronic asthma, chronic obstructive pulmonary disease, and lung cancer, is crucial for the treatment, analysis, and outcome of these diseases. Unlike other traditional models, we suggest a protocol that is sustainable and reproducible and offers different analysis methods while maintaining in vivo lung architecture and immune dynamics. This protocol allows one to study the pathophysiological changes, including changes to the immune cells, cytokines, and mediators, in 30 precision-cut lung slices from a single murine lung.
View Article and Find Full Text PDFData Appl Secur Priv XXXII (2024)
July 2024
Rutgers University, Newark, USA.
In the realm of access control mechanisms, Attribute-Based Access Control (ABAC) stands out for its dynamic and fine-grained approach, enabling permissions to be allocated based on attributes of subjects, objects, and the environment. This paper introduces a graph model for ABAC, named . The leverages directional flow capacities to enforce access control policies, mapping the potential pathways between a subject and an object to ascertain access rights.
View Article and Find Full Text PDFiScience
January 2025
Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
Tunas are high-performance pelagic fishes of considerable economic importance and have a suite of biological adaptations for high-speed locomotion. In contrast to our understanding of tuna body and muscle function, mechanosensory systems of tuna are poorly understood. Here we present the discovery of a remarkable sensory lateral line canal within the bilateral tuna keels with tubules that extend to the upper and lower keel surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!