Bordetella bronchiseptica lipopolysaccharide (LPS) expression varies depending on growth conditions, regulated by the Bvg system. A B. bronchiseptica pagP homologue was identified that is required for Bvg-mediated modification of the lipid A core region of LPS that occurs on switching from the Bvg- to the Bvg+ phase. Structural analysis demonstrated that the lipid A of a B. bronchiseptica pagP mutant differed from wild-type lipid A by the absence of a palmitate group in secondary acylation at the C3' position. The putative pagP promoter drove the expression of a green fluorescent protein (GFP) reporter gene in a Bvg-regulated fashion. These data suggest that B. bronchiseptica pagP encodes a Bvg-regulated lipid A palmitoyl transferase that mediates modification of the lipid A as part of the overall Bvg-mediated adaptation of this organism to changing environmental conditions. We also show that pagP is not required for the initial colonization of the mouse respiratory tract by B. bronchiseptica, but is required for persistence of the organism within this organ.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.2003.03484.xDOI Listing

Publication Analysis

Top Keywords

bronchiseptica pagp
16
bordetella bronchiseptica
8
bvg-regulated lipid
8
lipid palmitoyl
8
palmitoyl transferase
8
colonization mouse
8
mouse respiratory
8
respiratory tract
8
modification lipid
8
pagp
6

Similar Publications

Whole-cell vaccines against Gram-negative bacteria commonly display high reactogenicity caused by the endotoxic activity of lipopolysaccharide (LPS), one of the major components of the bacterial outer membrane. Underacylation of the lipid A moiety of LPS has been related with reduced endotoxicity in several Gram-negative species. Here, we evaluated whether the inactivation of two genes encoding lipid A acylases of , i.

View Article and Find Full Text PDF

Bordetella bronchiseptica PagP (PagPBB) is a lipid A palmitoyl transferase that is required for resistance to antibody-dependent complement-mediated killing in a murine model of infection. B. parapertussis contains a putative pagP homolog (encoding B.

View Article and Find Full Text PDF

Endotoxin is recognized as one of the virulence factors of the Bordetella avium bird pathogen, and characterization of its structure and corresponding genomic features are important for an understanding of its role in pathogenicity and for an improved general knowledge of Bordetella spp virulence factors. The structure of the biologically active part of B. avium LPS, lipid A, is described and compared to those of another bird pathogen, opportunistic in humans, Bordetella hinzii, and to that of Bordetella trematum, a human pathogen.

View Article and Find Full Text PDF

Lipopolysaccharide (LPS) is one of the main constituents of the Gram-negative bacterial outer membrane. It usually consists of a highly variable O-antigen, a less variable core oligosaccharide, and a highly conserved lipid moiety, designated lipid A. Several bacteria are capable of modifying their lipid A architecture in response to external stimuli.

View Article and Find Full Text PDF

To efficiently colonize and persist in the lower respiratory tract, bacteria must survive multiple host immune mechanisms. Bordetella bronchiseptica is a gram-negative respiratory pathogen that naturally infects mice and persists in the lower respiratory tract for up to 49 days postinoculation. In this work, we examined the effect of mutation of the pagP gene on the persistence of B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!