Background: Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules which associate with cadherins to form adherens junctions (AJs) in epithelial cells and fibroblasts. Nectin-1 and -3 are members of the nectin family which most strongly trans-interact, causing cell-cell adhesion. The trans-interaction between nectin-1 and -3 induces the activation of both Cdc42 and Rac small G proteins in epithelial cells. We studied the roles of Cdc42 and Rac activated in this way in L fibroblasts stably expressing both nectin-1 and E-cadherin (nectin-1-EL cells).
Results: The trans-interaction between nectin-1 and -3 induced the activation of Cdc42 and Rac in nectin-1-EL cells. Cdc42, and presumably Rac, activated in this way, induced the activation of c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK). Cdc42 or Rac was not essential for the association of nectin-1 and E-cadherin to form AJs. Reorganization of the actin cytoskeleton was not required for the association of nectin-1 and E-cadherin.
Conclusion: These results indicate that Cdc42 and Rac activated by the trans-interaction of nectins selectively induce the activation of JNK, but are not essential for the association of nectins and cadherin to form AJs in fibroblasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2443.2003.00649.x | DOI Listing |
Biomolecules
December 2024
Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.
RACGAP1 is a Rho-GTPase-activating protein originally discovered in male germ cells to inactivate Rac, RhoA and Cdc42 from the GTP-bound form to the GDP-bound form. GAP has traditionally been known as a tumor suppressor. However, studies increasingly suggest that overexpressed RACGAP1 activates Rac and RhoA in multiple cancers to mediate downstream oncogene overexpression by assisting in the nuclear translocation of signaling molecules and to promote cytokinesis by regulating the cytoskeleton or serving as a component of the central spindle.
View Article and Find Full Text PDFCells
January 2025
Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan.
Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo.
View Article and Find Full Text PDFCardiovasc Res
January 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Aims: Dedicator of Cytokinesis 2 (DOCK2), a member of the DOCK family of Guanine nucleotide exchange factors that specifically act on the Rho GTPases including Rac and Cdc42, plays pivotal roles in the regulation of leukocyte homeostasis. However, its functions in platelets remain unknown.
Methods And Results: Using mice with genetic deficiency of DOCK2 (Dock2-/-), we showed that Dock2-/-mice exhibited a macrothrombocytopenic phenotype characterized as decreased platelet count and enlarged platelet size by transmission electron microscopy.
Int J Biol Sci
January 2025
Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA.
PAK2 is a serine-threonine kinase and a member of the p21-activated kinase (PAK) family. PAK2 is activated by GTP-bound rho family GTPases, Rac, and Cdc42, and it regulates actin dynamics, cell adhesion to the extracellular matrix, and cell motility. In various types of cancers, PAK2 has been implicated in the regulation of cancer cell proliferation, cell cycle, and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!