Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, we investigated the role of nitric oxide (NO) in neurotoxicity triggered by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation in cultured hippocampal neurons. In the presence of cyclothiazide (CTZ), short-term exposures to kainate (KA; 5 and 15 min, followed by 24-h recovery) decreased cell viability. Both NBQX and d-AP-5 decreased the neurotoxicity caused by KA plus CTZ. Long-term exposures to KA plus CTZ (24 h) resulted in increased toxicity. In short-, but not in long-term exposures, the presence of NO synthase (NOS) inhibitors (l-NAME and 7-NI) decreased the toxicity induced by KA plus CTZ. We also found that KA plus CTZ (15-min exposure) significantly increased cGMP levels. Furthermore, short-term exposures lead to decreased intracellular ATP levels, which was prevented by NBQX, d-AP-5 and NOS inhibitors. Immunoblot analysis revealed that KA induced neuronal NOS (nNOS) proteolysis, gradually lowering the levels of nNOS according to the time of exposure. Calpain, but not caspase-3 inhibitors, prevented this effect. Overall, these results show that NO is involved in the neurotoxicity caused by activation of non-desensitizing AMPA receptors, although to a limited extent, since AMPA receptor activation triggers mechanisms that lead to nNOS proteolysis by calpains, preventing a further contribution of NO to the neurotoxic process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1471-4159.2003.01731.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!