Megakaryocyte differentiation is composed of three distinct stages: formation of erythromegakaryocytic progenitor cells, maturation of megakaryocytes and production of platelets. We have developed a liquid culture system for megakaryocyte terminal differentiation from haematopoietic stem cells into proplatelets. In this system, CD34+ cells isolated from human cord blood, differentiated to CD41+ cells, were classified either as propidium iodide (PI)+ cells (large) or PI- cells (small) by fluorescence-activated cell sorting analysis on the late-stage CD41+ cells. Transmission electron microscopy showed that the cultured small cells were morphologically identical to platelets isolated from normal peripheral blood. Moreover, the number of differentiated cells that were CD42b-positive attained an approximately 60-fold expansion over that of the primary CD34+ cells in this culture system. Furthermore, gene expression of megakaryocytopoietic transcriptional factors, GATA-1 and NF-E2, and several megakaryocytic markers such as glycoprotein (GP)IIb and thromboxane synthase was observed in the individual differentiation stage. Treatment with fibrinogen, a ligand of GPIIb/IIIa, increased the number of CD41+/PI+ cells, but treatment in the late stage suppressed CD41+/PI- cell formation, suggesting that fibrinogen promotes megakaryocytopoiesis, but not thrombopoiesis. We conclude that this liquid culture system using human CD34+ cells may be used to mimic the physiological development from haematopoietic stem cells into megakaryocytes, as well as promote subsequent thrombopoiesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2141.2003.04266.x | DOI Listing |
Sci Rep
December 2024
Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, 98195, USA.
Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Architecture, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran.
The advent of smart cities has brought about a paradigm shift in urban management and citizen engagement. By leveraging technological advancements, cities are now able to collect and analyze extensive data to optimize service delivery, allocate resources efficiently, and enhance the overall well-being of residents. However, as cities become increasingly interconnected and data-dependent, concerns related to data privacy and security, as well as citizen participation and representation, have surfaced.
View Article and Find Full Text PDFSci Rep
December 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Entomology and Nematology, University of California, Davis, Davis, California, USA.
Plant-microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar-inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!