Interactions between porcine antigen presenting cells (pAPCs) and host lymphocytes may be important in cellular and humoral rejection of porcine organ xenografts. To investigate the role of pAPCs in the activation of xenogeneic lymphocytes, porcine bone marrow cells were stimulated using porcine GM-CSF with or without porcine IL-4 to generate populations of pAPCs that had phenotypic characteristics of myeloid dendritic cells. These bone marrow-derived pAPCs were weak stimulators of xenogeneic (mouse and human) T cells in vitro but induced primary B-cell proliferation and augmented CD40-induced B-cell proliferation. Inoculation of mice with small numbers of pAPCs resulted in localized expansion of lymph node B cells. The mitogenic effect on xenogeneic B cells could be reproduced by medium in which pAPCs had been cultured, implicating one or more soluble products. In blocking experiments IL-12, IL-6, and IL-10 were found not to contribute to the mitogenic effect of pAPC medium. In contrast, pIFN was found to be capable of augmenting CD40-induced proliferation of xenogeneic B-cell proliferation but did not act as a B-cell mitogen. We conclude that myeloid APCs from the pig produce soluble factors that are capable of acting as primary mitogens for xenogeneic B cells as well as augmenting additional B-cell activating stimuli. This direct interaction between porcine APCs and xenogeneic B cells may serve as an important adjuvant for the stimulation of humoral immunity to porcine xenografts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1600-6143.2003.00091.x | DOI Listing |
Int J Biol Macromol
January 2025
School of Life Sciences, Zhengzhou University, Henan, Zhengzhou 450001, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100000, China; Longhu Laboratory, Henan, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Henan, Zhengzhou 450001, China; College of Veterinary Medicine, Henan Agricultural University, Henan, Zhengzhou 450001, China. Electronic address:
Autoimmune diseases are characterized by dysregulated immune responses and chronic inflammation. B cell activating factor (BAFF) and interleukin-17 (IL-17) are key mediators in the pathogenesis of several autoimmune diseases, driving B cell hyperactivation, autoantibody production, and tissue damage. Simultaneous targeting of these pathways may provide a synergistic therapeutic approach.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China. Electronic address:
IL-21 is a type I cytokine that is produced by activated CD4 T cells and has a significant impact on the growth, survival, and functional activation of B lymphocytes. While IL-21 has been identified in several teleost fish species, its function and associated mechanisms focus on teleost fish B cells remain largely unknown. In this study, we aimed to investigate the effects of IL-21 (OnIL-21) on IgM B cells from Nile tilapia (Oreochromis niloticus), as well as the intracellular signaling transduction pathway involved.
View Article and Find Full Text PDFInt Immunol
January 2025
Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo; Minato-ku, Tokyo 108-8639, Japan.
The cancer driver mutation L265P MyD88 is found in approximately 30 % of cases in the activated B cell-like subgroup of diffuse large B cell-like lymphoma (ABC DLBCL). L265P MyD88 forms a complex with TLR9 and IgM, referred to as the My-T-BCR complex, to drive proliferation. We here show that the B cell surface molecules CD19 and CD20 enhance proliferation mediated by the My-T-BCR complex.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904.
Antibody production is central to protection against new pathogens and cancers, as well as to certain forms of autoimmunity. Antibodies often originate in the lymph node (LN), specifically at the extrafollicular border of B cell follicles, where T and B lymphocytes physically interact to drive B cell maturation into antibody-secreting plasmablasts. In vitro models of this process are sorely needed to predict aspects of the human immune response.
View Article and Find Full Text PDFUnlabelled: X-linked Lymphoproliferative Syndromes (XLP), which arise from mutations in the or genes, are characterized by the inability to control Epstein-Barr Virus (EBV) infection. While primary EBV infection triggers severe diseases in each, lymphomas occur at high rates with XLP-1 but not with XLP-2. Why XLP-2 patients are apparently protected from EBV-driven lymphomagenesis, in contrast to all other described congenital conditions that result in heightened susceptibility to EBV, remains a key open question.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!