The thermogenic activity of interscapular brown adipose tissue (IBAT) in response to physiologic stimuli, such as cold exposure, is controlled by its sympathetic innervation. To determine which brain regions might be involved in the regulation of cold-evoked increases in sympathetic outflow to IBAT, the present study compared central nervous system (CNS) areas activated by cold exposure with brain regions anatomically linked to the sympathetic innervation of IBAT. Immunocytochemical localization of Fos was examined in the brains of rats exposed to 4 degrees C for 4 hours. In a separate group of rats, the neural circuit involved in IBAT control, including the location of sympathetic preganglionic neurons in the spinal cord, was characterized with pseudorabies virus, a retrograde transynaptic tracer. Central noradrenergic and serotonergic groups related to the sympathetic outflow to IBAT also were identified. Localization of viral antigens at different survival times (66-96 hours) revealed infection in circumscribed CNS populations, but only a subset of the regions comprising this circuitry showed cold-evoked Fos expression. The raphe pallidus and the ventromedial parvicellular subdivision of the paraventricular hypothalamic nucleus (PVH), both infected at early survival times, were the main areas containing sympathetic premotor neurons activated by cold exposure. Major cold-sensitive areas projecting to spinal interneurons or to regions containing sympathetic premotor neurons, which became infected at intermediate intervals, included lateral hypothalamic, perifornical, and retrochiasmatic areas, anterior and posterior PVH, ventrolateral periaqueductal gray, and Barrington's nucleus. Areas infected later, most likely related to reception of cold-related signals, comprised the lateral preoptic area, parastrial nucleus, dorsomedial hypothalamic nucleus, lateral parabrachial nucleus, and nucleus of the solitary tract. These interconnected areas, identified by combining functional and retrograde anatomic approaches, likely constitute the central circuitry responsible for the increase in sympathetic outflow to IBAT during cold-evoked thermogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.10643 | DOI Listing |
J Physiol Sci
January 2025
Department of Biomedical Engineering, Toyo University, Kawagoe, Japan.
The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-Ku, 819-0395, Fukuoka, Japan. Electronic address:
Intraocular pressure (IOP) plays a crucial role in glaucoma development, involving the dynamics of aqueous humor (AH). AH flows in from the ciliary body and exits through the trabecular meshwork (TM). IOP follows a circadian rhythm synchronized with the suprachiasmatic nucleus (SCN), the circadian pacemaker.
View Article and Find Full Text PDFBackground: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.
Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.
Auton Neurosci
January 2025
Department of Medicine, Jinnah Sindh Medical University, Rafiqi H J Shaheed Road, Karachi, Pakistan. Electronic address:
Paroxysmal Sympathetic Hyperactivity (PSH) is a challenging and often underrecognized syndrome, commonly arising after a traumatic brain injury (TBI). Characterized by episodic bursts of heightened sympathetic activity, PSH presents with a distinct constellation of symptoms including hypertension, tachycardia, hyperthermia, and diaphoresis. While the exact pathophysiology remains elusive, current evidence suggests that the syndrome results from an imbalance between excitatory and inhibitory neuronal pathways within the central nervous system, leading to dysregulated autonomic responses.
View Article and Find Full Text PDFGlia
January 2025
Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, USA.
Emerging evidence indicates that astrocytes modulate energy metabolism and homeostasis. However, one important but poorly understood element is the necessity of astrocytes in the control of body weight. Here, we apply viral vector-assisted brain-region selective loss of astrocytes to define physiological roles played by astrocytes in the arcuate nucleus of the hypothalamus (ARH) and to elucidate the involved mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!