Transgenic potato (Solanum tuberosum cv Désirée) plants overexpressing a soybean (Glycine max) type 1 sterol methyltransferase (GmSMT1) cDNA were generated and used to study sterol biosynthesis in relation to the production of toxic glycoalkaloids. Transgenic plants displayed an increased total sterol level in both leaves and tubers, mainly due to increased levels of the 24-ethyl sterols isofucosterol and sitosterol. The higher total sterol level was due to increases in both free and esterified sterols. However, the level of free cholesterol, a nonalkylated sterol, was decreased. Associated with this was a decreased glycoalkaloid level in leaves and tubers, down to 41% and 63% of wild-type levels, respectively. The results show that glycoalkaloid biosynthesis can be down-regulated in transgenic potato plants by reducing the content of free nonalkylated sterols, and they support the view of cholesterol as a precursor in glycoalkaloid biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166935PMC
http://dx.doi.org/10.1104/pp.102.018788DOI Listing

Publication Analysis

Top Keywords

transgenic potato
12
potato plants
8
type sterol
8
sterol methyltransferase
8
total sterol
8
sterol level
8
level leaves
8
leaves tubers
8
glycoalkaloid biosynthesis
8
sterol
6

Similar Publications

A novel geminivirus-derived 3' flanking sequence of terminator mediates the gene expression enhancement.

Plant Biotechnol J

December 2024

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China.

Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator.

View Article and Find Full Text PDF

Amaranth is an ancient crop of the family Amaranthaceae, but it is fairly new to Russia. Its seeds and leaf biomass contain a high-quality gluten-free protein, fatty acids, squalene (a polyunsaturated hydrocarbon), flavonoids, vitamins, and minerals. A comprehensive study of amaranth, enhancement of its breeding, and development of new cultivars will contribute to food quality improvement through the use of plant raw materials enriched for wholesome and highly nutritious components.

View Article and Find Full Text PDF

Effects of two amino acid transporter-like genes on potato growth.

J Plant Physiol

December 2024

Huzhou Wuxing Jinnong Ecological Agriculture Development Co. LTD, Huzhou, Zhejiang, 313000, People's Republic of China. Electronic address:

Amino acid transporters are membrane proteins that mediate amino acid transport across the plasma membrane. They play a significant role in plant growth and development. The amino acid permease (AAP) subfamily belongs to the activating transcription factor family, which is one of the main amino acid transporter families.

View Article and Find Full Text PDF

Identification of WRKY transcription factors in Ipomoea pes-caprae and functional role of IpWRKY16 in sweet potato salt stress response.

BMC Plant Biol

December 2024

The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.

Background: WRKY transcription factors are plant-specific and play essential roles in growth, development, and stress responses, including reactions to salt, drought, and cold. Despite their significance, the WRKY genes in the wild sweet potato ancestor, Ipomoea pes-caprae, remain unexplored.

Results: In this study, 65 WRKY genes were identified in the I.

View Article and Find Full Text PDF

Protein ubiquitination is an important regulatory mechanism for biological growth and development against environmental influences, and can affect several biological processes, including the growth, development, and stress responses of plants. However, the function of potato-related ubiquitin-conjugating enzymes in abiotic stress tolerance is poorly understood. In this study, a with a UBC conserved structural domain was identified in potato and its function was investigated under osmotic stress and salt stress conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!