The green alga, Chlamydomonas reinhardtii, can photoproduce molecular H(2) via ferredoxin and the reversible [Fe]hydrogenase enzyme under anaerobic conditions. Recently, a novel approach for sustained H(2) gas photoproduction was discovered in cell cultures subjected to S-deprived conditions (A. Melis, L. Zhang, M. Forestier, M.L. Ghirardi, M. Seibert [2000] Plant Physiol 122: 127-135). The close relationship between S and Fe in the H(2)-production process is of interest because Fe-S clusters are constituents of both ferredoxin and hydrogenase. In this study, we used Mössbauer spectroscopy to examine both the uptake of Fe by the alga at different CO(2) concentrations during growth and the influence of anaerobiosis on the accumulation of Fe. Algal cells grown in media with (57)Fe(III) at elevated (3%, v/v) CO(2) concentration exhibit elevated levels of Fe and have two comparable pools of the ion: (a) Fe(III) with Mössbauer parameters of quadrupole splitting = 0.65 mm s(-1) and isomeric shift = 0.46 mm s(-1) and (b) Fe(II) with quadrupole splitting = 3.1 mm s(-1) and isomeric shift = 1.36 mm s(-1). Disruption of the cells and use of the specific Fe chelator, bathophenanthroline, have demonstrated that the Fe(II) pool is located inside the cell. The amount of Fe(III) in the cells increases with the age of the algal culture, whereas the amount of Fe(II) remains constant on a chlorophyll basis. Growing the algae under atmospheric CO(2) (limiting) conditions, compared with 3% (v/v) CO(2), resulted in a decrease in the intracellular Fe(II) content by a factor of 3. Incubating C. reinhardtii cells, grown at atmospheric CO(2) for 3 h in the dark under anaerobic conditions, not only induced hydrogenase activity but also increased the Fe(II) content in the cells up to the saturation level observed in cells grown aerobically at high CO(2). This result is novel and suggests a correlation between the amount of Fe(II) cations stored in the cells, the CO(2) concentration, and anaerobiosis. A comparison of Fe-uptake results with a cyanobacterium, yeast, and algae suggests that the intracellular Fe(II) pool in C. reinhardtii may reside in the cell vacuole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166931PMC
http://dx.doi.org/10.1104/pp.102.018200DOI Listing

Publication Analysis

Top Keywords

cells grown
12
chlamydomonas reinhardtii
8
co2
8
anaerobic conditions
8
v/v co2
8
co2 concentration
8
quadrupole splitting
8
s-1 isomeric
8
isomeric shift
8
feii pool
8

Similar Publications

Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca) concentrations in root cells.

View Article and Find Full Text PDF

A Chromosome level assembly of pomegranate (Punica granatum L.) variety grown in arid environment.

Sci Data

January 2025

Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.

The pomegranate (Punica granatum L.) is an ancient fruit-bearing tree known for its nutritional and antioxidant properties. They originated from the Middle East in regions having large farms including mountainous regions of Al-Baha in Saudi Arabia.

View Article and Find Full Text PDF

LiOH Additive Triggering Beneficial Aging Effect of SnO Nanocrystal Colloids for Efficient Wide-Bandgap Perovskite Solar Cells.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xidian University, Xi'an 710071, PR China.

Commercial SnO nanocrystals used for producing electron transporting layers (ETLs) of perovskite solar cells (PSC) are prone to aggregation at room temperature and contain many structural defects. Herein, we report that the LiOH additive can simultaneously delay the aggregation and donate the beneficial aging effect to SnO nanocrystals. The resulting SnO ETLs show the desired characteristics, including a broadened absorption range, reduced defects, improved transporting properties, and decreased work function.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

The Mucilage From the Opuntia ficus-indica (L.) Mill. Cladodes Plays an Anti-Inflammatory Role in the LPS-Stimulated HepG2 Cells: A Combined In Vitro and In Silico Approach.

Mol Nutr Food Res

January 2025

Department for Sustainability, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Roma, Italy.

The effect of a mucilage extracted from Opuntia ficus-indica (L.) Mill (OFI) cladodes was tested in lipopolysaccharide (LPS)-challenged HepG2 hepatocarcinoma cells, through a combined in vitro-in silico approach. The OFI mucilage was characterized by gas chromatography-mass spectrometry and liquid chromatography-high resolution mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!