The interaction between myelin-associated glycoprotein (MAG), expressed at the periaxonal membrane of myelin, and receptors on neurons initiates a bidirectional signalling system that results in inhibition of neurite outgrowth and maintenance of myelin integrity. We show that this involves a lipid-raft to lipid-raft interaction on opposing cell membranes. MAG is exclusively located in low buoyancy Lubrol WX-insoluble membrane fractions isolated from whole brain, primary oligodendrocytes, or MAG-expressing CHO cells. Localisation within these domains is dependent on cellular cholesterol and occurs following terminal glycosylation in the trans-Golgi network, characteristics of association with lipid rafts. Furthermore, a recombinant form of MAG interacts specifically with lipid-raft fractions from whole brain and cultured cerebellar granule cells, containing functional MAG receptors GT1b and Nogo-66 receptor and molecules required for transduction of signal from MAG into neurons. The localisation of both MAG and MAG receptors within lipid rafts on the surface of opposing cells may create discrete areas of high avidity multivalent interaction, known to be critical for signalling into both cell types. Localisation within lipid rafts may provide a molecular environment that facilitates the interaction between MAG and multiple receptors and also between MAG ligands and molecules involved in signal transduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1044-7431(02)00031-3 | DOI Listing |
Biomolecules
January 2025
Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy.
Lipid rafts are dynamic microdomains in the membrane, rich in cholesterol and sphingolipids, that are critical for biological processes like cell signalling, membrane trafficking, and protein organization. Their essential role is claimed in both physiological and pathological conditions, including cancer, neurodegenerative diseases, and viral infections, making them a key area of research. Fluorescence-based approaches, including super-resolution fluorescence microscopy techniques, enable precise analysis of the organization, dynamics, and interactions of these microdomains, thanks also to the innovative design of appropriate fluorescent probes.
View Article and Find Full Text PDFACS Sens
January 2025
Cancer Hospital of Dalian University of Technology, Shenyang 110042, China.
Intracellular morphological apical-basal polarity, regulated by conserved polarity proteins, plays a crucial role in cell migration and metastasis. In this study, using a genetically encoded Förster resonance energy transfer (FRET) biosensor to visually present the spatiotemporal stress state between the lipid rafts on the membrane and the linked actin, we first provide the evidence for the existence of intrinsic apical-basal stress polarity in tumor cells and demonstrate that this polarity is a prerequisite for the formation of flow-induced front-back stress polarity. Interestingly, our study revealed that the front-back stress polarity disappeared upon the disruption of intrinsic apical-basal stress discrepancy, resulting in a large attenuated cell migration activity reduced from 76.
View Article and Find Full Text PDFCell Death Dis
January 2025
Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany.
Arachidonate 15-lipoxygenase type B (ALOX15B) peroxidises polyunsaturated fatty acids to their corresponding fatty acid hydroperoxides, which are subsequently reduced into hydroxy-fatty acids. A dysregulated abundance of these biological lipid mediators has been reported in the skin and blood of psoriatic compared to healthy individuals. RNAscope and immunohistochemistry revealed increased ALOX15B expression in lesional psoriasis samples.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wrocław, Poland. Electronic address:
The connection between the F-actin and ribosome docking to the PM has been reported, but the exact mechanism has remained unclear. Previously, we discovered that gelsolin (GSN) forms complexes with numerous ribosomal proteins, including ribosomal protein SA (RPSA). Now, we have unraveled the mechanism of ribosome recruitment to the lipid nanodomains of the PM, with GSN playing a pivotal role in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!