Invasive microorganisms efface enteric microvilli to establish intimate contact with the apical surface of enterocytes. To understand the molecular basis of this effacement in amebic colitis, we seeded Entamoeba histolytica trophozoites on top of differentiated human Caco-2 cell layers. Western blots of detergent lysates from such cocultures showed proteolysis of the actin-bundling protein villin within 1 min of direct contact of living trophozoites with enterocytes. Mixtures of separately prepared lysates excluded detergent colysis as the cause of villin proteolysis. Caspases were not responsible as evidenced by the lack of degradation of specific substrates and the failure of a specific caspase inhibitor to prevent villin proteolysis. A crucial role for amebic cysteine proteinases was shown by prevention of villin proteolysis and associated microvillar alterations through the treatment of trophozoites before coculture with synthetic inhibitors that completely blocked amebic cysteine proteinase activity on zymograms. Moreover, trophozoites of amebic strains pSA8 and SAW760 with strongly reduced cysteine proteinase activity showed a reduced proteolysis of villin in coculture with enteric cells. Salmonella typhimurium and enteropathogenic Escherichia coli disturb microvilli without villin proteolysis, indicating that the latter is not a consequence of the disturbance of microvilli. In conclusion, villin proteolysis is an early event in the molecular cross-talk between enterocytes and amebic trophozoites, causing a disturbance of microvilli.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M300142200DOI Listing

Publication Analysis

Top Keywords

villin proteolysis
20
proteolysis
8
villin
8
entamoeba histolytica
8
cysteine proteinases
8
amebic cysteine
8
cysteine proteinase
8
proteinase activity
8
disturbance microvilli
8
amebic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!