Leakage of K+ ions from Staphylococcus aureus in response to tea tree oil.

J Microbiol Methods

Department of Microbiology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.

Published: June 2003

The leakage of K(+) ions from Staphylococcus aureus in response to tea tree oil (TTO) was investigated with an ion-selective electrode. The amount of leaked K(+) ions and the rate of leakage of K(+) ions induced by TTO were dependent on the concentration of TTO. Measurements of initial rates required less time than measurements of total amounts and provided an index of the interaction between TTO and the cell membrane. Thus, the initial rate of leakage might be a more useful measure of the antibacterial activity of TTO than the total amount.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0167-7012(02)00248-8DOI Listing

Publication Analysis

Top Keywords

leakage ions
12
ions staphylococcus
8
staphylococcus aureus
8
aureus response
8
response tea
8
tea tree
8
tree oil
8
rate leakage
8
tto
5
leakage
4

Similar Publications

The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.

View Article and Find Full Text PDF

This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.

View Article and Find Full Text PDF

Prediction of nitrate concentration and the impact of land use types on groundwater in the Nansi Lake Basin.

J Hazard Mater

January 2025

School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430074, China.

Groundwater faces a pervasive threat from anthropogenic nitrate contamination worldwide, particularly in regions characterized by intensive agricultural practices. This study examines groundwater quality in the Nansi Lake Basin (NSLB), emphasizing nitrate (NO-N) contamination. Utilizing 422 groundwater samples, it investigates hydrochemical dynamics and the impact of land use on groundwater composition.

View Article and Find Full Text PDF

Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.

View Article and Find Full Text PDF

Potato is cultivated all the year round in Pakistan. However, the major crop is the autumn crop which is planted in mid-October and contributes 80-85% of the total production. The abrupt climate change has affected the weather patterns all over the world, resulting in the reduction of the mean air temperature in autumn by almost 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!