AI Article Synopsis

Article Abstract

Previous studies have implicated the Eed-Enx1 Polycomb group complex in the maintenance of imprinted X inactivation in the trophectoderm lineage in mouse. Here we show that recruitment of Eed-Enx1 to the inactive X chromosome (Xi) also occurs in random X inactivation in the embryo proper. Localization of Eed-Enx1 complexes to Xi occurs very early, at the onset of Xist expression, but then disappears as differentiation and development progress. This transient localization correlates with the presence of high levels of the complex in totipotent cells and during early differentiation stages. Functional analysis demonstrates that Eed-Enx1 is required to establish methylation of histone H3 at lysine 9 and/or lysine 27 on Xi and that this, in turn, is required to stabilize the Xi chromatin structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1534-5807(03)00068-6DOI Listing

Publication Analysis

Top Keywords

inactive chromosome
8
recruitment eed-enx1
8
eed-enx1 polycomb
8
polycomb group
8
eed-enx1
5
establishment histone
4
histone methylation
4
methylation inactive
4
chromosome requires
4
requires transient
4

Similar Publications

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

In this Research Highlight, we discuss recent research which shows that TCR-mediated activation and NF-κB signalling play an indispensable role in localising Xist RNA and its interactors to the inactive X chromosome (Xi) in T cells (left and middle). Inhibition of NF-κB disrupts this process, impairing the recruitment of silencing factors and jeopardizing the maintenance of X chromosome inactivation (right).

View Article and Find Full Text PDF

Identification of f.a., sp. nov. and large indels in the rRNA cistron that split the genus.

Int J Syst Evol Microbiol

January 2025

National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, Pune, India.

Yeast strains representing a novel asexual ascomycetous species were isolated from seven flowers. Sequencing of the chromosomal regions coding for the D1/D2 domains of the large subunit ribosomal RNA, the ITS1-5.8S-ITS2 segments and parts of the gene coding for the small subunit ribosomal RNA showed that the isolates were conspecific.

View Article and Find Full Text PDF

Chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia patients largely benefit from an expanding tyrosine kinase inhibitors (TKIs) toolbox that has improved the outcome of both diseases. However, TKI success is continuously challenged by mutation-driven acquired resistance and therefore, close monitoring of clonal genetic diversity is necessary to ensure proper clinical management and adequate response to treatment. Here, we report the case of a ponatinib-resistant Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) patient harboring a BCR::ABL1 p.

View Article and Find Full Text PDF

Application of the SpCas9 inhibitor BRD0539 for CRISPR/Cas9-based genetic tools in .

Biosci Microbiota Food Health

September 2024

Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!