Spin-dependent lepton-nucleon scattering data have been used to investigate the validity of the concept of quark-hadron duality for the spin asymmetry A1. Longitudinally polarized positrons were scattered off a longitudinally polarized hydrogen target for values of Q2 between 1.2 and 12 GeV2 and values of W2 between 1 and 4 GeV2. The average double-spin asymmetry in the nucleon resonance region is found to agree with that measured in deep-inelastic scattering at the same values of the Bjorken scaling variable x. This finding implies that the description of A1 in terms of quark degrees of freedom is valid also in the nucleon resonance region for values of Q2 above 1.6 GeV2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.90.092002 | DOI Listing |
Phys Rev Lett
February 2015
INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy and Universita' di Roma Tor Vergata, 00133 Rome, Italy.
There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector.
View Article and Find Full Text PDFPhys Rev Lett
July 2014
Duke University, Durham, North Carolina 27708, USA.
We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction 3)He(↑)(e,e')X on a polarized (3)He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be nonzero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5.
View Article and Find Full Text PDFPhys Rev Lett
May 2014
Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA and University of Virginia, Charlottesville, Virginia 22901, USA.
The study of exclusive π(±) electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio RL=σL(π-)/σL(π+) is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of RT=σT(π-)/σT(π+) from unity at small -t, to 1/4 at large -t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks.
View Article and Find Full Text PDFPhys Rev Lett
January 2013
Northwestern University, Evanston, Illinois 60208, USA.
The electromagnetic structure of the lightest hadrons, proton, pion, and kaon is studied by high-precision measurements of their form factors for the highest timelike momentum transfers of |Q2|=s=14.2 and 17.4 GeV2.
View Article and Find Full Text PDFPhys Rev Lett
September 2012
Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia.
Exclusive π(0) electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q(2), x(B), t, and ϕ(π), in the Q(2) range from 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!