"Complex plasmas" consist of electrons, ions, and charged microparticles. The latter are individually observable, allowing kinetic measurements in plasmas. Using a sudden gas pulse, a traveling perturbation was initiated in such a complex plasma and its propagation, acceleration, and steepening-possibly into a shock was followed. The experiment was performed in the PKE-Nefedov laboratory under microgravity conditions on the international space station, i.e., in a complex plasma cloud with very little stored (potential or free) energy and thus free of, e.g., parametric instabilities. The perturbation front remained remarkably smooth, with a microroughness of the order of the interparticle distance. The observations are presented and interpreted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.67.036404 | DOI Listing |
PLoS One
January 2025
Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland.
Sport-related injuries have been reported to occur in around one-third of agility dogs. Higher bar height in competitions has been shown to increase odds of an injury. This study evaluated the effect of bar height on the kinetics and kinematics at take-off to a bar jump.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany.
Free ions in organic solvents of low polarity would be valuable tools for the activation of low-reactivity substrates. However, the formation of unreactive ion pairs at concentrations relevant for synthesis has prevented the success of this concept so far. On the example of highly nucleophilic pyridinamide phosphonium salts in dichloromethane, we show that asymmetric aggregation offers a solution to this general problem.
View Article and Find Full Text PDFArtif Organs
January 2025
International Renal Research Institute of Vicenza (IRRIV), Vicenza, Veneto, Italy.
Background: Contrast-associated acute kidney injury (CA-AKI) is frequent in patients with chronic kidney disease who are submitted to cardiac endovascular procedures using iodinated contrast. In hemoadsorption, cartridges containing styrene-divinylbenzene sorbent resin are applied to remove substances from the blood through an extracorporeal circuit. Importantly, iodinated contrast is also removed via adsorption.
View Article and Find Full Text PDFACS Nano
January 2025
Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, P. R. China.
Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Max Planck-EPFL Laboratory for Molecular Nanoscience, Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland, 1005, Lausanne, SWITZERLAND.
Efficient catalytic water splitting demands advanced catalysts to improve the slow kinetics of the oxygen evolution reaction (OER). Earth-abundant transition metal oxides show promising OER activity in alkaline media. However, most experimental information available is either from post-mortem studies or in-situ space-averaged X-ray techniques in the micrometer range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!