We investigate the electronic structure of the fullerenes encapsulated inside carbon nanotubes, the so-called nanopeapods, using the first-principles study. The orbital hybridization of LUMO+1 (the state above the lowest unoccupied molecular orbital) of C60, rather than LUMO as previously proposed, with the nanotube states explains the peak at approximately 1 eV in recent scanning-tunneling-spectroscopy (STS) data. For the endohedral metallofullerenes nested in the strained nanotube, the charge transfer shifts the relative energy levels of the different states and produces a spatial modulation of the energy gap in agreement with another STS experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.90.106402DOI Listing

Publication Analysis

Top Keywords

orbital hybridization
8
charge transfer
8
hybridization charge
4
transfer carbon
4
carbon nanopeapods
4
nanopeapods investigate
4
investigate electronic
4
electronic structure
4
structure fullerenes
4
fullerenes encapsulated
4

Similar Publications

Hybridization effects on the magnetic ground state of ruthenium in double perovskite LaZnRuTiO.

J Phys Condens Matter

January 2025

School of Materials Science, Indian Association for the Cultivation of Science, Calcutta 700 032, Kolkata, West Bengal, 700032, INDIA.

An exotic quantum mechanical ground state, i.e. the nonmagnetic= 0 state, has been predicted for higher transition metal tsystems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.

View Article and Find Full Text PDF

Using deep learning to shorten the acquisition time of brain MRI in acute ischemic stroke: Synthetic T2W images generated from b0 images.

PLoS One

January 2025

Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Objective: This study aimed to assess the feasibility of the deep learning in generating T2 weighted (T2W) images from diffusion-weighted imaging b0 images.

Materials And Methods: This retrospective study included 53 patients who underwent head magnetic resonance imaging between September 1 and September 4, 2023. Each b0 image was matched with a corresponding T2-weighted image.

View Article and Find Full Text PDF

A hybrid B3LYP version of the Density Functional Theory was applied in full geometry optimization followed by vibrational analysis of mustard-type molecules acting as antiblood cancer agents: melphalan and bendamustine. All calculations were performed with water as a solvent. In addition to the ground-state properties (dipole moment, quadrupole moment, dipole polarizability, solvated surface and volume, zero-point vibration energy, total entropic term), properties that characterize adiabatic redox processes (ionization energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index) together with the absolute oxidation and reduction potentials were evaluated.

View Article and Find Full Text PDF

Control of individual spins at the atomic level holds great promise for miniaturized spintronics, quantum sensing, and quantum information processing. Both single atomic and molecular spin centers are prime candidates for these applications and are often individually addressed and manipulated using scanning tunneling microscopy (STM). In this work, we present a hybrid approach and demonstrate a robust method for self-assembly of magnetic organometallic complexes consisting of individual iron (Fe) atoms and molecules on a silver substrate using STM.

View Article and Find Full Text PDF

f-p-d Orbital Hybridization Promotes Hydroxyl Intermediate Adsorption for Electrochemical Biomolecular Oxidation and Identification.

Anal Chem

January 2025

Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P.R. China.

The rational design of efficient hydroxyl intermediate (*OH) adsorption catalysts for dopamine electrooxidation still faces a major challenge. To address this challenge, a CeO-loaded CuO catalyst inspired by the f-p-d orbital hybridization strategy is designed to achieve efficient *OH adsorption and improve dopamine oxidation. The experimental results and theoretical calculations demonstrate that the f-p-d orbital hybridization regulates the electron distribution at the Ce-O-Cu interface, which facilitates electron transfer and optimizes the adsorption of *OH, thereby promoting dopamine oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!