A dynamic magneto-optical trap, which relies on the rapid randomization of population in Zeeman substates, has been demonstrated for fermionic strontium atoms on the 1S0-3P1 intercombination transition. The obtained sample, 1x10(6) atoms at a temperature of 2 microK in the trap, was further Doppler cooled and polarized in a far-off resonant optical lattice to achieve 2 times the Fermi temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.90.113002 | DOI Listing |
J Phys Condens Matter
January 2025
CNRS, LOMA, UMR 5798, Université de Bordeaux, 351 Cr de la Libération, Talence, Nouvelle-Aquitaine, 33400, FRANCE.
Layered Nickelates have gained intensive attention as potential high-temperature superconductors, showing similarities and subtle differences to well-known Cuprates. This study introduces a modelling framework to analyze the tunability of electronic structures by focusing on effective orbitals and additional Fermi pockets, mimicking doping or external pressure qualitatively. It investigates the role of the $3d_{z^2}$ orbital in interlayer hybridization, which leads to the formation of a second pocket in the Fermi surface.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates PrLaCeCuO showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), IIT M Research Park, Chennai 600113, India.
The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics and Materials Science, University of Luxembourg, Esch-sur-Alzette, L-4365, Luxembourg.
Cu(In, Ga)S demonstrates potential as a top cell material for tandem solar cells. However, achieving high efficiencies has been impeded by open-circuit voltage (V) deficits arising from In-rich and Ga-rich composition segregation in the absorber layer. This study presents a significant improvement in the optoelectronic quality of Cu(In, Ga)S films through the mitigation of composition segregation in three-stage co-evaporated films.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Escuela de Artes Plásticas y Audiovisuales, Benemerita Universidad Autonoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Edificios 1IF1, 2IF1 y 3IF1, Ciudad Universitaria, Colonia San Manuel, Puebla, Puebla, 72570, MEXICO.
Transition metal nitrides are well-known 3D superconductor materials. However, there is a lack of knowledge related to their two-dimensional (2D) counterparts, which have several potential technological applications. In this work, we predict, using an evolutionary algorithm coupled with a first-principles approach, a set of novel 2D superconductive structures based on tungsten nitride.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!