The effect of inert salts on the structure of the transition state has been determined by measuring the secondary alpha deuterium and the chlorine leaving group kinetic isotope effects for the S(N)2 reaction between n-butyl chloride and thiophenoxide ion in both methanol and DMSO. The smaller secondary alpha deuterium isotope effects and very slightly larger chlorine isotope effects found in both solvents when the inert salt is present suggests that the S(N)2 transition state is tighter and more product-like, with a shorter S-C(alpha) and very a slightly longer C(alpha)-Cl bond when the added salt is present. The salt effect on the reaction in methanol where the reacting nucleophile is the solvent-separated ion-pair complex is much greater than the salt effect on the reaction in DMSO where the reacting nucleophile is the free ion. This greater change in transition-state structure found when the inert salt is present in methanol is consistent with the solvation rule for S(N)2 reactions. The greater change in the S-C(alpha) bond is predicted by the bond strength hypothesis. A rationale for the changes found in transition-state structure when the inert salt is present is suggested for both the free-ion and the ion-pair reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo026879dDOI Listing

Publication Analysis

Top Keywords

transition state
12
isotope effects
12
inert salt
12
inert salts
8
salts structure
8
structure transition
8
sn2 reaction
8
thiophenoxide ion
8
secondary alpha
8
alpha deuterium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!