In response to light, the retinal pigment epithelium (RPE) generates a series of potentials that can be recorded using the dc-electroretinogram (dc-ERG). As these potentials can be related to specific cellular events, they provide information about RPE function and how that may be altered by disease or experimental manipulation. The purposes of the present study were to define a noninvasive means for recording the rat dc-ERG, to use this to define the stimulus-response properties of the major components, and to relate these results to measures of the rat electrooculogram (EOG). Parallel studies were conducted in two strains of rats (Long-Evans, LE; Sprague-Dawley, SD) that are commonly used in vision research. Rats were sedated with ketamine/xylazine and placed on a heating pad. Ag/AgCl wire electrodes were bridged with capillary tubes filled with Hanks balanced salt solution. The active electrode was placed in contact with the corneal surface and referenced to a second electrode placed within the orbit. The dc-ERG signal was amplified (dc-100 Hz), digitized, and stored offline. The duration of full-field flash stimuli was controlled using a mechanical shutter and flash luminance was controlled with neutral density filters. EOGs were recorded using subdermal platinum needle electrodes placed near the eye. In response to a 5-min light exposure, the dc-ERG of LE and SD rats included a distinct b-wave, after potential, c-wave, fast oscillation, and a slow potential of positive polarity the characteristics of which are consistent with a light peak. In LE rats, the final plateau of this slow positive potential was often lower than the prestimulus baseline; in SD rats, this potential achieved a level above the baseline. Analysis of EOGs recorded from these two strains yielded results consistent with the amplitude of the slow potential relative to the prestimulus baseline. Specifically, the amplitude of the EOG of SD rats increased when the eye was exposed to light. In LE rats, this increase did not occur, and in some cases light reduced the amplitude of the EOG. The two strains also differed with respect to c-wave implicit time, which was faster in SD rats. These results indicate that many of the major components of the dc-ERG are readily measured in the rat. Therefore, we believe that the rat may provide a useful animal model in which to conduct pharmacological analysis of nonneuronal responses and to develop animal models of human retinal disorders involving the RPE, such as Best Vitelliform Macular Dystrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s0952523802196015DOI Listing

Publication Analysis

Top Keywords

noninvasive recording
8
major components
8
rats
8
eogs recorded
8
slow potential
8
prestimulus baseline
8
amplitude eog
8
rat
5
light
5
dc-erg
5

Similar Publications

Risk factors associated with higher WHO grade in meningiomas: a multicentric study of 552 skull base meningiomas.

Sci Rep

January 2025

Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University and Military University Hospital, U Vojenske nemocnice 1200, Prague, 169 02, Czech Republic.

The histological grade is crucial for therapeutic management, and its reliable preoperative detection can significantly influence treatment approach. Lacking established risk factors, this study identifies preoperative predictors of high-grade skull base meningiomas and discusses the implications of non-invasive detection. A multicentric study was conducted on 552 patients with skull base meningiomas who underwent primary surgical resection between 2014 and 2019.

View Article and Find Full Text PDF

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF
Article Synopsis
  • Measuring the heart rate of sea turtles helps us understand their physiological adaptations, particularly focusing on the non-invasive ECG methods developed for loggerhead turtles.
  • The study explored alternative electrode placements on the plastron of green sea turtles, finding successful ECG readings when the negative electrode was positioned near the neck.
  • Results showed that resting heart rates averaged about 8.6 beats per minute, aligning with previous studies, and highlight the need for careful individual selection to improve measurement reliability.
View Article and Find Full Text PDF

Background: Early and continuous exposure to painful stimuli in premature infants leads to short-and long-term complications. Listening to white noise is an accessible and inexpensive non-invasive method that can be used as a safe nursing intervention in hospitals. This study aimed to assess white noise's effect on premature Infants' physiological parameters during peripheral intravenous catheter insertion.

View Article and Find Full Text PDF

The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!