There is evidence suggesting that the ischemic gut is a major source of factors that lead to neutrophil activation, and that neutrophil activation can be reduced by hypertonic saline resuscitation. Thus, we tested whether trauma-hemorrhagic shock-induced neutrophil activation can be reduced by hypertonic saline resuscitation, as well as whether hypertonic saline reduces the ability of mesenteric lymph from shocked animals to activate neutrophils. Male Sprague-Dawley rats subjected to trauma (laparotomy), plus 90 min of shock [mean arterial pressure (MAP) MAP = 30 mmHg] or sham shock were resuscitated with Ringer's lactate or 7.5% hypertonic saline at an equivalent sodium load. Whole blood samples were collected before shock as well as at 1 and 2 h after the end of the shock period for neutrophil CD11b and CD18 expression measurements. In a second set of experiments, mesenteric lymph samples collected from rats subjected to trauma plus hemorrhagic shock (T/HS) or trauma plus sham-shock (T/SS) and resuscitated with Ringer's lactate or hypertonic saline were tested for their ability to modulate PMN CD11b, CD18, or L-selectin expression, as well as prime PMN for an augmented respiratory burst. To avoid confounding results due to interspecies differences, while at the same time looking at potential human responses, both naive rat and human PMN were tested. Both CD11b and CD18 expression were increased in PMN harvested from rats subjected to T/HS and resuscitated with Ringer's lactate solution, but not in T/HS rats resuscitated with hypertonic saline. These results indicate that PMN activation is increased to a greater extent in Ringer's lactate-resuscitated than hypertonic saline-resuscitated animals. Likewise, mesenteric lymph from the T/HS rats resuscitated with Ringer's lactate increased naive rat and human PMN CD11b and CD18 expression to a greater extent than did T/HS lymph from the hypertonic saline-treated rats. Additionally, T/HS lymph from the Ringer's lactate- but not the hypertonic saline-treated rats induced PMN L-selectin shedding. Lastly, T/HS lymph from the Ringer's lactate-treated rats induced the greatest PMN respiratory burst. These results indicate that resuscitation from T/HS with hypertonic saline is associated with less PMN activation than resuscitation with Ringer's lactate, and that factors produced or released by the postischemic intestine and carried in the mesenteric lymph contribute to neutrophil activation after an episode of T/HS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00024382-200304000-00006 | DOI Listing |
Pediatr Pulmonol
December 2024
Imperial College London, National Heart and Lung Institute, London, UK.
J Family Med Prim Care
November 2024
Department of Pediatrics, Aliasghar Clinical Research Development Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Introduction: This study was conducted to assess the response to treatment and compare the effects of nebulized normal saline 0.9% and hypertonic saline 3% in the management of acute bronchiolitis, a condition associated with multiple complications in pediatric patients.
Materials And Methods: In this clinical trial, a total of 60 children diagnosed with viral bronchiolitis in the autumn and winter of 2018 at Ali Asghar Children's Hospital's emergency department were enrolled.
J Pharm Pract
December 2024
Department of Pharmacy, Upstate University Hospital, Syracuse, NY, USA.
Clin Pract Cases Emerg Med
November 2024
University of Nevada, Las Vegas, Kirk Kerkorian School of Medicine, Las Vegas, Nevada.
Case Presentation: A 32-year-old male with a history of left eye keratoconus presented to the emergency department with left eye pain and blurry vision for two days. Out of concern for corneal hydrops, ophthalmology was consulted, and the diagnosis was confirmed. Per ophthalmology recommendations, the patient was started on hypertonic saline and prednisolone eye drops and referred to a corneal specialist.
View Article and Find Full Text PDFCurr Neurol Neurosci Rep
December 2024
Division of Critical Care, Department of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok, 10700, Thailand.
Purpose Of Review: The objective of this review is to provide a comprehensive management protocol for the treatment of intracranial pressure (ICP) crises based on the latest evidence.
Recent Findings: The review discusses updated information on various aspects of critical care management in patients experiencing ICP crises, including mechanical ventilation, fluid therapy, hemoglobin targets, and hypertonic saline infusion, the advantages of ICP monitoring, the critical ICP threshold, and bedside neuromonitoring. All aspects of critical care treatment, including hemodynamic and respiratory support and adjustment of ICP reduction therapy, may impact patient outcomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!