AI Article Synopsis

  • Oxidative stress from high blood sugar levels can damage pancreatic beta-cells, contributing to issues in diabetes patients.
  • Astaxanthin, a powerful antioxidant found in marine algae, was tested for its protective effects on beta-cells in diabetic mice.
  • The study showed that astaxanthin treatment lowered blood glucose levels and preserved insulin secretion ability, indicating its potential as a beneficial antioxidant for managing diabetes.

Article Abstract

Oxidative stress induced by hyperglycemia possibly causes the dysfunction of pancreatic beta-cells and various forms of tissue damage in patients with diabetes mellitus. Astaxanthin, a carotenoid of marine microalgae, is reported as a strong anti-oxidant inhibiting lipid peroxidation and scavenging reactive oxygen species. The aim of the present study was to examine whether astaxanthin can elicit beneficial effects on the progressive destruction of pancreatic beta-cells in db/db mice--a well-known obese model of type 2 diabetes. We used diabetic C57BL/KsJ-db/db mice and db/m for the control. Astaxanthin treatment was started at 6 weeks of age and its effects were evaluated at 10, 14, and 18 weeks of age by non-fasting blood glucose levels, intraperitoneal glucose tolerance test including insulin secretion, and beta-cell histology. The non-fasting blood glucose level in db/db mice was significantly higher than that of db/m mice, and the higher level of blood glucose in db/db mice was significantly decreased after treatment with astaxanthin. The ability of islet cells to secrete insulin, as determined by the intraperitoneal glucose tolerance test, was preserved in the astaxanthin-treated group. Histology of the pancreas revealed no significant differences in the beta-cell mass between astaxanthin-treated and -untreated db/db mice. In conclusion, these results indicate that astaxanthin can exert beneficial effects in diabetes, with preservation of beta-cell function. This finding suggests that anti-oxidants may be potentially useful for reducing glucose toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1179/135100002125000811DOI Listing

Publication Analysis

Top Keywords

db/db mice
16
blood glucose
12
glucose toxicity
8
pancreatic beta-cells
8
beneficial effects
8
weeks age
8
non-fasting blood
8
intraperitoneal glucose
8
glucose tolerance
8
tolerance test
8

Similar Publications

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex disorder and multiple cellular and molecular mechanisms are involved in AD onset and progression. Recent evidences have suggested that metabolic alterations are an important pathological feature in disease progression in AD. Likewise, diabetes and obesity, two mayor metabolic illnesses, are risk factors for AD.

View Article and Find Full Text PDF

Recent studies have highlighted the role of the gut microbiota in type 2 diabetes (T2D). Improving gut microbiota dysbiosis can be a potential strategy for the prevention and management of T2D. Here, this work finds that the abundance of Barnesiella intestinihominis is significantly decreased in the fecal of T2D patients from 2-independent centers.

View Article and Find Full Text PDF

Intestinal microbiota are pathophysiologically involved in diabetic nephropathy (DN). Dapagliflozin, recognized for its blood glucose-lowering effect, has demonstrated efficacy in improving DN. However, the mechanisms beyond glycemic control that mediate the impact of dapagliflozin on DN remain unclear.

View Article and Find Full Text PDF

Berberine alleviates AGEs-induced ferroptosis by activating NRF2 in the skin of diabetic mice.

Exp Biol Med (Maywood)

December 2024

Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.

Advanced glycation end products (AGEs) have adverse effects on the development of diabetic complications. Berberine (BBR), a natural alkaloid, has demonstrated its ability to promote the delayed healing of skin wounds. However, the impact of BBR on AGEs-induced ferroptosis in skin cells and the underlying molecular mechanisms remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!