Delineation of CCK receptor binding sites is a prerequisite for the understanding of the molecular basis for ligand recognition, partial agonism, ligand-induced traffiking of receptor signalling. In the current paper, we illustrate how, in the past 5 years, studies from our laboratory and others have provided new data on the molecular basis of the pharmacology and functioning of CCK1 and CCK2 receptors. Available data on CCK1 and CCK2R binding sites indicate that 1) homologous regions of the two receptors are involved in the binding site of CCK, however, positioning of CCK slightly differs; 2) binding sites of non-peptide agonists/antagonist are buried in the pocket formed by transmembrane helices and overlap that of CCK and 3) residues of the binding sites as well as of conserved motifs such as E/DRY, NPXXY are crucial for receptor activation.

Download full-text PDF

Source
http://dx.doi.org/10.1034/j.1600-0773.2002.910608.xDOI Listing

Publication Analysis

Top Keywords

binding sites
20
receptor binding
8
molecular basis
8
binding
6
sites
5
structure cholecystokinin
4
receptor
4
cholecystokinin receptor
4
sites mechanism
4
mechanism activation/inactivation
4

Similar Publications

Impact of residual aluminum on nanofiltration gypsum scaling: Mitigation roles played by different species.

Water Res

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:

Residual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl-, Al, and Al-) membranes. The morphology of gypsum, the role of Al species on Ca adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated.

View Article and Find Full Text PDF

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

The Antibody Mediated Prevention (AMP) trials showed that passively infused VRC01, a broadly neutralizing antibody (bNAb) targeting the CD4 binding site (CD4bs) on the HIV-1 envelope protein (Env), protected against neutralization-sensitive viruses. We identified six individuals from the VRC01 treatment arm with multi-lineage breakthrough HIV-1 infections from HVTN703, where one variant was sensitive to VRC01 (IC < 25 ug/mL) but another was resistant. By comparing Env sequences of resistant and sensitive clones from each participant, we identified sites predicted to affect VRC01 neutralization and assessed the effect of their reversion in the VRC01-resistant clone on neutralization sensitivity.

View Article and Find Full Text PDF

Type III clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems (type III CRISPR-Cas systems) use guide RNAs to recognize RNA transcripts of foreign genetic elements, which triggers the generation of cyclic oligoadenylate (cOA) second messengers by the Cas10 subunit of the type III effector complex. In turn, cOAs bind and activate ancillary effector proteins to reinforce the host immune response. Type III systems utilize distinct cOAs, including cyclic tri- (cA3), tetra- (cA4) and hexa-adenylates (cA6).

View Article and Find Full Text PDF

The Circumsporozoite Protein (PfCSP) has been used in developing the RTS,S, and R21 malaria vaccines. However, genetic polymorphisms within compromise the effectiveness of the vaccine. Thus, it is essential to continuously assess the genetic diversity of , especially when deploying it across different geographical regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!