Closed-loop stimulation (CLS) is a physiological system for adaptive rate pacing based on monitoring and processing of the intracardiac impedance. The "standard" CLS algorithm (SCLS) requires continuous ventricular pacing. A new, enhanced CLS algorithm (ECLS) provides rate modulation during sensed and paced ventricular depolarizations. The aim of this study was to validate ECLS and to compare its effectiveness with that of SCLS. Ten patients received Inos2+ CLS pulse generators. SCLS and ECLS were uploaded to the device and evaluated in a randomized, crossover fashion at 30 and 45 days after pacemaker implantation. At each follow-up visit, ambulatory and posture tests were performed. Heart rate (HR) during daily activity was evaluated based on 24-hour Holter recordings. During all phases of the ambulatory test, both algorithms provided physiologically appropriate rates in all patients. The proportion of sensed ventricular events was significantly higher in ECLS (93.9%) than in SCLS (0.7%). The proportion of paced ventricular events during 24 hours was substantially lower with ECLS (25.7%) than with SCLS (98.4%). Postural changes did not influence HR with either algorithm. The Holter recordings indicated prompt, safe, and effective rate modulation appropriate to patients activity. In conclusion, analysis of these clinical data demonstrated the safety and effectiveness of the ECLS algorithm. Moreover, with this algorithm the ventricle is paced only when required, which may be expected to retard battery depletion and retain the natural ventricular activation pattern whenever possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1460-9592.2003.00022.x | DOI Listing |
PLoS One
January 2025
Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Sevilla, Spain.
Epilepsy is a prevalent neurological disorder that affects approximately 1% of the global population. Approximately 30-40% of patients respond poorly to antiepileptic medications, leading to a significant negative impact on their quality of life. Closed-loop deep brain stimulation (DBS) is a promising treatment for individuals who do not respond to medical therapy.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
January 2025
Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00185 Rome, Italy.
Refractory angina pectoris (RAP) is a clinical syndrome characterized by persistent chest pain caused by myocardial ischemia that is unresponsive to optimal pharmacological therapy and revascularization procedures. Spinal cord stimulation (SCS) has emerged as a promising therapeutic option for managing RAP, offering significant symptom relief and improved quality of life. A systematic literature review was conducted to evaluate the clinical effectiveness, mechanisms of action, and safety profile of SCS in treating RAP.
View Article and Find Full Text PDFNeural Regen Res
December 2024
Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China.
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine.
View Article and Find Full Text PDFFront Physiol
January 2025
Institute of Biomedical Electronics, Vienna University of Technology, Vienna, Austria.
Neuromodulation comes into focus as a non-pharmacological therapy with the vagus nerve as modulation target. The auricular vagus nerve stimulation (aVNS) has emerged to treat chronic diseases while re-establishing the sympathovagal balance and activating parasympathetic anti-inflammatory pathways. aVNS leads still to over and under-stimulation and is limited in therapeutic efficiency.
View Article and Find Full Text PDFBioelectron Med
January 2025
SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA.
The field of bioelectronic medicine has advanced rapidly from rudimentary electrical therapies to cutting-edge closed-loop systems that integrate real-time physiological monitoring with adaptive neuromodulation. Early innovations, such as cardiac pacemakers and deep brain stimulation, paved the way for these sophisticated technologies. This review traces the historical and technological progression of bioelectronic medicine, culminating in the emerging potential of closed-loop devices for multiple disorders of the brain and body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!