DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300.

Microbiology (Reading)

Genetik, Fachbereich Biologie, Geo- und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, POB 2503, D-26111 Oldenburg, Germany.

Published: April 2003

Natural transformation is a mechanism for intra- and interspecific transfer of chromosomal DNA in Pseudomonas stutzeri. During this process a single strand derived from duplex DNA is transported into the cytoplasm and recombined with resident DNA. By electroporation, which introduces duplex DNA into cells, 100-fold lower transformation frequencies of P. stutzeri JM300 were observed with shuttle vector or broad-host-range plasmid DNA when the plasmids had replicated in Escherichia coli and not in P. stutzeri JM300. Moreover, the natural transformation with cloned chromosomal P. stutzeri JM300 DNA was reduced about 40-fold when the DNA had not been propagated in P. stutzeri JM300 but in E. coli. Restriction was also active during natural transformation by single-stranded DNA. Restriction during natural transformation and electroporation was abolished in mutants isolated from mutagenized JM300 cells after applying a multiple plasmid electroporation strategy for the enrichment of restriction-defective strains. The mutants had retained the ability for DNA modification. The P. stutzeri strain ATCC 17587 was found to have no restriction-modification system as seen in JM300. It is discussed whether restriction during natural transformation acts at presynaptic or postsynaptic stages of transforming DNA. Restriction as a barrier to transformation apparently contributes to sexual isolation and therefore may promote speciation in the highly diverse species P. stutzeri.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.26033-0DOI Listing

Publication Analysis

Top Keywords

natural transformation
24
stutzeri jm300
20
dna restriction
12
dna
11
restriction barrier
8
transformation
8
stutzeri
8
pseudomonas stutzeri
8
jm300 natural
8
duplex dna
8

Similar Publications

Superhydrophobic and Self-Healing Porous Organic Macrocycle Crystals for Methane Purification under Humid Conditions.

J Am Chem Soc

January 2025

Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.

Purifying methane from natural gas using adsorbents not only requires the adsorbents to possess excellent separation performance but also to overcome additional daunting challenges such as humidity interference and durability requirements for sustainable use. Herein, porous organic crystals of a new macrocycle () with superhydrophobic and self-healing features are prepared and employed for the purification of methane (>99.99% purity) from ternary methane/ethane/propane mixtures under 97% relative humidity.

View Article and Find Full Text PDF

Cytochromes of the P450 superfamily are widespread in nature; they were found in all studied aerobic organisms. Although the degree of similarity between cytochromes P450 of different families is low, all enzymes of this superfamily have similar tertiary structures. In addition, all cytochromes P450, including enzymes of the CYP74 clan, contain substrate recognition sites in their sequences, which form the catalytic center.

View Article and Find Full Text PDF

Purpose Of Review: Artificial intelligence (AI) offers a new frontier for aiding in the management of both acute and chronic pain, which may potentially transform opioid prescribing practices and addiction prevention strategies. In this review paper, not only do we discuss some of the current literature around predicting various opioid-related outcomes, but we also briefly point out the next steps to improve trustworthiness of these AI models prior to real-time use in clinical workflow.

Recent Findings: Machine learning-based predictive models for identifying risk for persistent postoperative opioid use have been reported for spine surgery, knee arthroplasty, hip arthroplasty, arthroscopic joint surgery, outpatient surgery, and mixed surgical populations.

View Article and Find Full Text PDF

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!