Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa.

Microbiology (Reading)

Department of Biochemistry, University of Otago, PO Box 56, Dunedin, New Zealand.

Published: April 2003

Fluorescent pseudomonads secrete yellow-green siderophores named pyoverdines or pseudobactins. These comprise a dihydroxyquinoline derivative joined to a type-specific peptide and, usually, a carboxylic acid or amide. In Pseudomonas aeruginosa strain PAO1, six genes that encode proteins required for pyoverdine synthesis (pvd genes) have been identified previously. Expression of all of these genes requires an alternative sigma factor PvdS. The purpose of this research was to identify other genes that are required for pyoverdine synthesis in P. aeruginosa PAO1. Fourteen candidate genes were identified from the PAO1 genome sequence on the basis of their location in the genome, the functions of homologues in other bacteria, and whether their expression was likely to be PvdS-dependent. The candidate genes were mutated and the effects of the mutations on pyoverdine production were determined. Eight new pvd genes were identified. The presence of homologues of pvd genes in other strains of P. aeruginosa was determined by Southern blotting and in other fluorescent pseudomonads by interrogation of genome sequences. Five pvd genes were restricted to strains of P. aeruginosa that make the same pyoverdine as strain PAO1, suggesting that they direct synthesis of the type-specific peptide. The remaining genes were present in all strains of P. aeruginosa that were examined and homologues were present in other Pseudomonas species. These genes are likely to direct synthesis of the dihydroxyquinoline moiety and the attached carboxylic acid/amide group. It is likely that most if not all of the genes required for pyoverdine synthesis in P. aeruginosa PAO1 have now been identified and this will form the basis for a biochemical description of the pathway of pyoverdine synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.26085-0DOI Listing

Publication Analysis

Top Keywords

pyoverdine synthesis
20
pvd genes
16
genes
13
required pyoverdine
12
genes identified
12
strains aeruginosa
12
pseudomonas aeruginosa
8
fluorescent pseudomonads
8
type-specific peptide
8
strain pao1
8

Similar Publications

is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.

View Article and Find Full Text PDF

Background: Bacterial pathogens frequently encounter host-derived metabolites during their colonization and invasion processes, which can serve as nutrients, antimicrobial agents, or signaling molecules for the pathogens. The essential nutrient choline (Cho) is widely known to be utilized by a diverse range of bacteria and may undergo conversion into the disease-associated metabolite trimethylamine (TMA). However, the impact of choline metabolism on bacterial physiology and virulence remains largely unexplored.

View Article and Find Full Text PDF

The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental spp.

View Article and Find Full Text PDF

As a result of drug resistance, many antimicrobial medicines become ineffective, making the infections more difficult to treat. Therefore, there is a need to develop new compounds with antibacterial activity. This role may be played, for example, by metal complexes with carboxylic acids.

View Article and Find Full Text PDF

Tuning antibacterial efficacy against Pseudomonas aeruginosa by using green AgNPs in chitosan thin films as a plastic alternative.

Int J Biol Macromol

December 2024

Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy.

Nanotechnology advancements have facilitated the development of eco-friendly strategies to combat bacterial infections caused by antibiotic-resistant pathogens. This study promotes a green method for the synthesis of silver nanoparticles (AgNPs) utilizing Eucalyptus globulus leaf extracts as an alternative to traditional colloidal AgNPs obtained through chemical synthesis, investigating their antibacterial efficacy against Pseudomonas aeruginosa and their impact on the expression of bacterial virulence factors (pyocyanin, pyoverdine, rhamnolipids). This work demonstrates that: i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!