The (11;19)(q23;p13.1) translocation in acute leukemia results in the formation of a chimeric MLL-ELL fusion protein. ELL is an RNA Polymerase II (Pol II) transcriptional elongation factor that interacts with the recently identified EAF1 protein. Here, we show that ELL and EAF1 are components of Cajal bodies (CBs). Although ELL and EAF1 colocalize with p80 coilin, the signature protein of CBs, ELL and EAF1 do not exhibit a direct physical interaction with p80 coilin. Treatment of cells with actinomycin D, DRB, or alpha-amanitin, specific inhibitors of Pol II, disperses ELL and EAF1 from CBs, indicating that localization of ELL and EAF1 in CBs is dependent on active transcription by Pol II. The concentration of ELL and EAF1 in CBs links the transcriptional elongation activity of ELL to the RNA processing functions previously identified in CBs. Strikingly, CBs are disrupted in MLL-ELL leukemia. EAF1 and p80 coilin are delocalized from CBs in murine MLL-ELL leukemia cells and in HeLa cells transiently transfected with MLL-ELL. Nuclear and cytoplasmic fractionation revealed diminished expression of p80 coilin and EAF1 in the nuclei of MLL-ELL leukemia cells [corrected]. These studies are the first demonstration of a direct role of CB components in leukemogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC153119PMC
http://dx.doi.org/10.1091/mbc.e02-07-0394DOI Listing

Publication Analysis

Top Keywords

ell eaf1
28
mll-ell leukemia
16
p80 coilin
16
eaf1 cbs
12
ell
9
eaf1
9
disrupted mll-ell
8
protein ell
8
ell rna
8
transcriptional elongation
8

Similar Publications

EAF1 and EAF2, the eleven-nineteen lysine-rich leukemia (ELL)-associated factors which can assemble to the super elongation complex (AFF1/4, AF9/ENL, ELL, and P-TEFb), are reported to participate in RNA polymerase II to actively regulate a variety of biological processes, including leukemia and embryogenesis, but whether and how EAF1/2 function in hematopoietic system related hypoxia tolerance during embryogenesis remains unclear. Here, we unveiled that deletion of EAF1/2 (eaf1 and eaf2) caused reduction in hypoxia tolerance in zebrafish, leading to reduced erythropoiesis during hematopoietic processes. Meanwhile, eaf1 and eaf2 mutants showed significant reduction in the expression of key transcriptional regulators scl, lmo2, and gata1a in erythropoiesis at both 24 h post fertilization (hpf) and 72 hpf, with gata1a downregulated while scl and lmo2 upregulated at 14 hpf.

View Article and Find Full Text PDF

Mammalian cells immediately inhibit transcription upon exposure to genotoxic stress to avoid fatal collision between ongoing transcription and newly recruited DNA repair machineries to protect genomic integrity. However, mechanisms of this early transcriptional inhibition are poorly understood. In this study, we decipher a novel role of human EAF1, a positive regulator of ELL-dependent RNA Polymerase II-mediated transcription in vitro, in regulation of temporal inhibition of transcription during genotoxic stress.

View Article and Find Full Text PDF

Although ELL-associated factors 1 and 2 (EAF1/2) have been shown to enhance RNA polymerase II-mediated transcription , their functional roles are poorly known. In this report, we show functions of these proteins in regulating ELL stability through their competitive binding with HDAC3 at the N terminus of ELL. Reduced HDAC3 binding to ELL causes increased acetylation leading to reduced ubiquitylation-mediated degradation.

View Article and Find Full Text PDF

Both skin wound healing and the cardiac response to myocardial infarction (MI) progress through similar pathways involving inflammation, resolution, tissue repair, and scar formation. Due to the similarities, we hypothesized that the healing response to skin wounding would predict future response to MI. Mice were given a 3-mm skin wound using a disposable biopsy punch and the skin wound was imaged daily until closure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!