Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multimers of soluble major histocompatibility complex class I and II molecules have proven to be useful reagents in quantifying and following specific T cell populations. This study describes the design, generation, and characterization of a novel, single chain I-A(b) molecule which utilizes a unique linker derived from the murine invariant chain. A fragment of the invariant chain, residues 58-85, binds to a region proximal to the class II peptide binding groove and stabilizes occupancy of the class II invariant chain-associated peptide. We have utilized this fragment, replacing CLIP with the Ealpha peptide sequence, to lock the attached peptide into the class II binding groove. The single chain I-A(b) molecule was recognized by a panel of conformation-sensitive, I-A(b)-specific, monoclonal antibodies. Membrane-bound and soluble forms of the single chain I-A(b) stimulated an antigen-specific T cell hybridoma, and tetramers made from soluble monomers stained these cells. The unique features of this molecule may be useful in the design of recombinant T cell receptor ligands containing peptides with low affinity for MHC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0161-5890(03)00010-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!