Acute femoral neuropathy secondary to an iliacus muscle hematoma.

J Neurol Sci

Neurology Service, Complexo Hospitalario de Pontevedra, Loureiro Crespo s/n, Pontevedra 36.001, Spain.

Published: May 2003

We present a patient with a spontaneous iliacus muscle hematoma, appearing immediately after a minor physical maneuver, presenting with pain and femoral neuropathy initially evidenced by massive quadriceps muscle fasciculations. A magnetic resonance imaging (MRI) study of the pelvic area confirmed the diagnosis, showing a hematoma secondary to a partial muscle tear. The patient was managed conservatively, and the continuous muscle activity ceased in 3 days, with progressive improvement of the pain and weakness. The recovery was complete. Femoral neuropathy is uncommon and usually due to compression from psoas muscle mass lesions of diverse nature, including hematomas. Usually subacute, femoral neuropathy may present acutely in cases of large or strategically placed compressive femoral nerve lesions, and may require surgical evacuation. The case presented herein is remarkable since the muscle hematoma appeared after a nonviolent maneuver, fasciculations were present at onset, and conservative management was sufficient for a full recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-510x(03)00005-4DOI Listing

Publication Analysis

Top Keywords

femoral neuropathy
16
muscle hematoma
12
iliacus muscle
8
muscle
7
acute femoral
4
neuropathy
4
neuropathy secondary
4
secondary iliacus
4
hematoma
4
hematoma patient
4

Similar Publications

Entrapment neuropathies of the lower extremity are often underdiagnosed due to limitations in clinical examination and electrophysiological testing. Advanced imaging techniques, particularly MR neurography and high-resolution ultrasonography (US), have significantly improved the evaluation and diagnosis of these conditions by enabling precise visualization of nerves and their surrounding anatomical structures. This review focuses on the imaging features of compressive neuropathies affecting the lumbosacral plexus and its branches, including the femoral, obturator, sciatic, common peroneal, and tibial nerves.

View Article and Find Full Text PDF

Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression.

View Article and Find Full Text PDF

Background Femoral neuropathy is a significant postoperative complication in gynecological surgery that can severely impact patient mobility and quality of life. Among various mechanisms of nerve injury, retractor-induced compression against the pelvic sidewall has been identified as a particularly crucial causative factor. Despite this well-recognized mechanism and its clinical importance, few studies have investigated specific preventive strategies for this iatrogenic complication.

View Article and Find Full Text PDF

The impact of endogenous N/OFQ on DPN: Insights into lower limb blood flow regulation in rats.

Neuropeptides

January 2025

College of Anesthesiology, Shanxi Medical University, Taiyuan 030000, China; Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan 030000, China. Electronic address:

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, often accompanied by impaired vascular endothelial function in the lower limbs. This dysfunction is characterized by a reduced vasodilatory response, leading to decreased blood flow in the lower limbs and ultimately contributing to the development of diabetic peripheral neuropathy. To delve deeper into this pathological process, the study employed bioinformatics to identify and analyze genes highly active in DPN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!