Reaction mechanism and regulation of cystathionine beta-synthase.

Biochim Biophys Acta

Biochemistry Department, University of Nebraska, Lincoln, NE 68588-0664, USA.

Published: April 2003

In mammals, cystathionine beta-synthase catalyzes the first step in the transsulfuration pathway which provides an avenue for the conversion of the essential amino acid, methionine, to cysteine. Cystathionine beta-synthase catalyzes a PLP-dependent condensation of serine and homocysteine to cystathionine and is unique in also having a heme cofactor. In this review, recent advances in our understanding of the kinetic mechanism of the yeast and human enzymes as well as pathogenic mutants of the human enzyme and insights into the role of heme in redox sensing are discussed from the perspective of the crystal structure of the catalytic core of the human enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1570-9639(03)00044-xDOI Listing

Publication Analysis

Top Keywords

cystathionine beta-synthase
12
beta-synthase catalyzes
8
human enzyme
8
reaction mechanism
4
mechanism regulation
4
cystathionine
4
regulation cystathionine
4
beta-synthase mammals
4
mammals cystathionine
4
catalyzes step
4

Similar Publications

Neuroprotective Actions of Cannabinoids in the Bovine Isolated Retina: Role of Hydrogen Sulfide.

Pharmaceuticals (Basel)

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.

Both hydrogen sulfide and endocannabinoids can protect the neural retina from toxic insults under in vitro and in vivo conditions. The aim of the present study was two-fold: (a) to examine the neuroprotective action of cannabinoids [methanandamide and 2-arachidonyl glycerol (2-AG)] against hydrogen peroxide (HO)-induced oxidative damage in the isolated bovine retina and (b) to evaluate the role of endogenously biosynthesized hydrogen sulfide (HS) in the inhibitory actions of cannabinoids on the oxidative stress in the bovine retina. Isolated neural retinas from cows were exposed to oxidative damage using HO (100 µM) for 10 min.

View Article and Find Full Text PDF

Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease.

Int J Mol Sci

January 2025

Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.

Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.

View Article and Find Full Text PDF

Homocystinuria due to cystathionine beta-synthase (CBS) deficiency is a rare metabolic disorder inherited as an autosomal recessive trait. Spectrum of genetic variants in gene and their correlation with the phenotypes of homocystinuria in Sri Lankan patients have not been reported to date. The objective of this study was to identify the genotypes and genotype-phenotype correlations in a cohort of Sri Lankan patients with homocystinuria due to CBS deficiency.

View Article and Find Full Text PDF

The cystathionine beta-synthase (CBS) gene plays a critical role in numerous physiological processes, including cellular proliferation, bioenergetics, and redox balance, and has been implicated in many cancers, including breast and gastric cancers. Previous studies have suggested that VNTR polymorphism in intron 13 of the CBS gene may influence enzyme activity, as an increase in the number of repeats in this VNTR leads to a reduction in the activity of the CBS enzyme. In this case-control study, for the first time, we genotyped 107 patients with gastric cancer (and 111 healthy controls) and 138 patients with breast cancer (and 124 healthy controls) for the CBS VNTR polymorphism using PCR.

View Article and Find Full Text PDF

Predicting drug-target interaction (DTI) stands as a pivotal and formidable challenge in pharmaceutical research. Many existing deep learning methods only learn the high-dimensional representation of ligands and targets on a small scale. However, it is difficult for the model to obtain the potential law of combining pockets or multiple binding sites on a large scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!