Plants may experience environmental stress factors operating in nature either simultaneously or in sequence. In the study, we have acclimated the developing primary leaves of wheat seedlings to high light stress and examined their photosynthetic response to polyethylene glycol (PEG) mediated osmotic stress during different developmental phases including senescence. The high light acclimated leaves show higher level of total carotenoids as compared to their non-acclimated counterparts experiencing osmotic stress during senescence. They also exhibit greater membrane stability as indicated by the measurements of fluorescence polarisation and energy transfer efficiency in photosystem I (PSI) and Photosystem II (PSII). From the data of DCPIP photoreduction and pulse amplitude modulated (PAM) fluorimetry, a similar trend is observed for PSII photochemistry of the leaves experiencing osmotic stress during senescence. Our results may suggest that the stress adaptive potential induced by one stress during development is retained by the leaves and helps to mitigate another stress effect operating in sequence during another developmental phase, namely senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1078/0176-1617-00791DOI Listing

Publication Analysis

Top Keywords

osmotic stress
16
high light
12
stress senescence
12
stress
10
experiencing osmotic
8
leaves
5
senescence
5
senescing leaves
4
leaves possess
4
possess potential
4

Similar Publications

Drought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A.

View Article and Find Full Text PDF

Hypo-osmotic stress shifts transcription of circadian genes.

Biophys J

January 2025

Dept. of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd. Worcester, MA 01609. Electronic address:

Cells respond to hypo-osmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypo-osmotic stress for 12 and 24 hours in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart.

View Article and Find Full Text PDF

Background: The imbalance between Egypt's water requirements and supply necessitates the use of unconventional water sources, such as treated sewage water (TSW) and agricultural drainage water (ADW), to combat water scarcity. This study investigated the effects of foliar glycine betaine (GB) on vegetative growth parameters, physiological characteristics, photosynthetic pigments, leaf element contents, anatomical leaf structures, and antioxidant activity. The experiment was conducted in two successive seasons (2021/2022 and 2022/2023) using Kapok seedlings irrigated with ADW and TSW at different mixing ratios with normal irrigation water (NIW) (25%, 50%, 75%, and 100%), combined with foliar spraying of GB at concentrations of 0.

View Article and Find Full Text PDF

Entropy generation and water conservation in the mammalian nephron.

J Comp Physiol B

January 2025

Departamento de Fisiologia, Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil.

During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation.

View Article and Find Full Text PDF

Mechanisms of thermal, acid, desiccation and osmotic tolerance of spp.

Crit Rev Food Sci Nutr

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, China.

spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!