AI Article Synopsis

Article Abstract

The amygdala complex substantially contributes to the generation and propagation of focal seizures in patients suffering from temporal lobe epilepsy (TLE). A cellular substrate for increased excitability in the human amygdala, however, remains to be identified. Here, we analyzed the three-dimensional morphology of 264 neurons from different subregions of the amygdaloid complex obtained from 17 "en bloc" resected surgical specimens using intracellular Lucifer Yellow (LY) injection and confocal laser scanning microscopy. Autopsy samples from unaffected individuals ( n=3, 20 neurons) served as controls. We have identified spine-laden, spine-sparse and aspinous cells in the lateral, basal, accessory basal and granular nuclei. Semiquantitative analysis points to significant changes in neuronal soma size, number of dendrites and spine densities in specimens from epilepsy patients compared to controls. Neuronal somata in the epilepsy group were smaller compared to controls ( P<0.01), neurons had fewer first-order dendrites ( P<0.01), whereas the maximum density of spines per dendritic segment in these cells was increased in TLE patients ( P<0.01). There were also dendritic alterations such as focal constrictions or spine bifurcations. These changes were consistent between amygdaloid subregions. The dendritic morphology of amygdaloid neurons in TLE patients points to substantial changes in synaptic connectivity and would be compatible with altered neuronal circuitries operating in the epileptic human amygdala. Although the morphological alterations differ from those described in hippocampal subregions of a similar cohort of TLE patients, they appear to reflect a characteristic pathological substrate associated with seizure activity/propagation within the amygdaloid complex.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-003-0707-0DOI Listing

Publication Analysis

Top Keywords

temporal lobe
8
lobe epilepsy
8
compared controls
8
cellular pathology
4
pathology amygdala
4
amygdala neurons
4
neurons human
4
human temporal
4
epilepsy
4
epilepsy amygdala
4

Similar Publications

In light of the growing interest in the bidirectional relationship between epilepsy and dementia, this review aims to provide an overview of the role of hyperphosphorylated tau (pTau) in cognition in human epilepsy. A literature search identified five relevant studies. All of them examined pTau burden in surgical biopsy specimens from patients with temporal lobe epilepsy.

View Article and Find Full Text PDF

Neural connectivity underlying core language functions.

Brain Lang

January 2025

Department of Veterans Affairs Rehabilitation Research and Development Brain Rehabilitation Research Center at the Malcom Randall VA Medical Center, Gainesville, FL 32608, USA; University of Florida Department of Neurology, Gainesville, FL 32610, USA; Neurology Service, North Florida/South GeorgiaUSA Veterans Health System and Department of Neurology, University of Florida, Gainesville, FL 32608, USA. Electronic address:

Introduction: Although many white matter tracts underlying language functions have been identified, even in aggregate they do not provide a sufficiently detailed and expansive picture to enable us to fully understand the computational processes that might underly language production and comprehension. We employed diffusion tensor tractography (DTT) with a tensor distribution model to more extensively explore the white matter tracts supporting core language functions. Our study was guided by hypotheses stemming largely from the aphasia literature.

View Article and Find Full Text PDF

RINCH (Rhythmic Ictal Non-Clonic Hand movements), a lateralizing sign in frontotemporal epilepsy, has been well described in the adult epilepsy population but not in the pediatric setting. We looked for evidence of RINCH as an ictal sign in pediatric epilepsy monitoring unit reports in a large academic pediatric hospital. We found nine patients with RINCH ictal phenomenon over a five-year period.

View Article and Find Full Text PDF

Aim: To provide a theoretical basis for the study of the pathogenesis of residual dizziness (RD) from the perspective of imaging.

Materials And Methods: The general clinical data of the RD group and healthy control (HC) group were statistically analysed by two independent sample t tests, rank sum tests or chi-square tests. The imaging data of the two groups of people were preprocessed and statistically analysed by using the data processing and analysis for brain imaging (DPABI) software package.

View Article and Find Full Text PDF

Objective: Epilepsy is a common neurological disease affecting nearly 1% of the global population, and temporal lobe epilepsy (TLE) is the most common type. Patients experience recurrent seizures and chronic cognitive deficits that can impact their quality of life, ability to work, and independence. These cognitive deficits often extend beyond the temporal lobe and are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!