The immature human brain, when damaged, is able to reorganise functionally. We performed functional MRI during eight different movements in a patient found incidentally to have an extensive, frontal, congenital arachnoid cyst, looking at which neural substrates contribute to motor control. Significant changes from the normal pattern of activation were seen in cortical and cerebellar areas which could not be accounted for by the space-occupying effect of the cyst alone. These findings in this asymptomatic patient with a congenital anomaly demonstrate an alternative organisation of the central motor system, with a preservation of neurological function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00234-002-0929-1 | DOI Listing |
Knee Surg Sports Traumatol Arthrosc
January 2025
Department of Joint Surgery and Sports Medicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
Purpose: This study aimed to investigate whether combining the analysis of different magnetic resonance imaging (MRI) signs enhances the diagnostic accuracy of lateral meniscus posterior root tears (LMPRTs) in patients with anterior cruciate ligament (ACL) injuries. We hypothesised that analysing the cleft, ghost and truncated triangle signs and lateral meniscus extrusion (LME) measurement together would improve the preoperative MRI-based diagnosis of LMPRTs.
Methods: This retrospective study used prospectively collected registry data from two academic centres, including patients undergoing primary or revision ACL reconstruction (ACLR) and LMPRT repair.
Clin Anat
January 2025
Department of Neurosurgery, Tulane University School of Medicine, New Orleans, Louisiana, USA.
Recent advances in small-joint arthroscopy and cutting-edge magnetic resonance imaging systems have enabled orthopedic surgeons to perform more complex repairs of the wrist. Such repairs can include those of the triangular fibrocartilage complex (TFCC) of the wrist that necessitates a reappraisal of its morphometry with special emphasis on the relationship between its articular disc (AD) and surrounding tissues. The TFCC AD is a fibrocartilaginous, biconcave structure located between the ulnar styloid process and the carpal bones of the wrist.
View Article and Find Full Text PDFJ Anat
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Changes in the microstructure of the aortic wall precede the progression of various aortic pathologies, including aneurysms and dissection. Current clinical decisions with regards to surgical planning and/or radiological intervention are guided by geometric features, such as aortic diameter, since clinical imaging lacks tissue microstructural information. The aim of this proof-of-concept work is to investigate a non-invasive imaging method, diffusion tensor imaging (DTI), in ex vivo aortic tissue to gain insights into the microstructure.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain.
Background: Biallelic pathogenic variants in the FUCA1 gene are associated with fucosidosis. This report describes a 4-year-old boy presenting with psychomotor regression, spasticity, and dystonic postures.
Methods And Results: Trio-based whole exome sequencing revealed two previously unreported loss-of-function variants in the FUCA1 gene.
Ophthalmic Physiol Opt
January 2025
Robert O Curle Ophthalmology Suite, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
Purpose: To determine whether imaging features derived from fundus photographs contain 3D eye shape information beyond that available from spherical equivalent refraction (SER).
Methods: We analysed 99 eyes of 68 normal adults in the UK Biobank. An ellipsoid was fitted to the entire volume of each posterior eye (vitreous chamber without the lens)-segmented from magnetic resonance imaging of the brain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!