The role of rat organic anion transporter 3 (rOat3; Slc22a8) in the efflux transport at the blood-brain barrier (BBB) was characterized. The expression of rOat1, rOat2, and rOat3 in the brain capillary endothelial cells (BCEC) was examined using reverse transcription-polymerase chain reaction analysis, which showed that there was no expression of rOat1 or rOat2, but moderate expression of rOat3. The expression of rOat3 in the BCEC was further confirmed by Western blotting. Immunohistochemical staining showed that rOat3 is located on the abluminal and, possibly, luminal membrane of the BCEC. The contribution of rOat3 to the efflux of para-aminohippuric acid (PAH) and benzylpenicillin (PCG), substrates of rOat3, from the cerebrum into the blood circulation across the BBB was evaluated using the Brain Efflux Index method. PAH and PCG were eliminated from the cerebrum with rate constants of 0.039 and 0.043 min-1, respectively, and the elimination was saturated at high substrate concentrations. Taking account of the dilution in the brain, the Km values for the elimination of PAH and PCG were estimated to be 168 and 29 micro M, respectively. The efflux of PAH and PCG across the BBB was inhibited in a dose-dependent manner by unlabeled PCG and PAH, respectively. The Ki value of PAH for the efflux of PCG was 106 micro M and that of PCG for the efflux of PAH was 58 micro M. These values were comparable with their Km values, suggesting that they share the same efflux mechanism at the BBB. Furthermore, cimetidine and pravastatin, which are also substrates and inhibitors of rOat3, significantly inhibited the efflux of PAH and PCG from the cerebrum. These results suggest that rOat3 is responsible for the elimination of PAH and PCG from the brain across the BBB.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.103.049197DOI Listing

Publication Analysis

Top Keywords

pah pcg
20
efflux pah
12
roat3
9
pah
9
pcg
9
organic anion
8
anion transporter
8
blood-brain barrier
8
efflux
8
expression roat1
8

Similar Publications

Species differences of organic anion transporters involved in the renal uptake of 4-amino-3-chlorophenyl hydrogen sulfate, a metabolite of resatorvid, between rats and dogs.

Biopharm Drug Dispos

May 2013

Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co. Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan. Takeuchi_

Previous studies on the metabolic fate of resatorvid (TAK-242) have shown that species differences in the pharmacokinetics of 4-amino-3-chlorophenyl hydrogen sulfate (M-III), a metabolite of TAK-242, between rats and dogs are mainly attributable to the urinary excretion process. In the present study, the renal uptake mechanism of M-III was investigated using kidney slices and Xenopus laevis oocytes expressing rat organic anion transporter 1 (rOat1; Slc22a6) and rOat3 (Slc22a8). The uptake of p-aminohippuric acid (PAH), a substrate for Oats, by kidney slices from rats and dogs increased at 37 °C and M-III inhibited the uptake.

View Article and Find Full Text PDF

The purpose is to investigate whether the targets of drug-drug interactions (DDIs) between JBP485 and acyclovir are OAT1 and OAT3 in kidney. Plasma concentration and accumulative urinary excretion of acyclovir in vivo, uptake of acyclovir in kidney slices and uptake of acyclovir in human (h) OAT1/ hOAT3-human embryonic kidney (HEK) 293 cells in vitro were performed to examine the effect of JBP485 on urinary excretion of acyclovir. The plasma concentration of acyclovir was increased markedly and accumulative urinary excretion and renal clearance of acyclovir were decreased significantly after intravenous administration of acyclovir in combination with JBP485.

View Article and Find Full Text PDF

Organic anion transporters involved in the excretion of bestatin in the kidney.

Peptides

February 2012

Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Lvshunkou District, Dalian, China.

Bestatin, a dipeptide, a low molecular weight aminopeptidase inhibitor, has been demonstrated to be an immunomodulator with an antitumor activity. However, the transporter-mediated renal excretion of bestatin is not fully understood. The purpose of this study was to elucidate the transporter-mediated renal excretion mechanism for bestatin.

View Article and Find Full Text PDF

The purpose of the present study was to characterize rat organic anion transporter (Oat) 3 (Oat3, Slc22a8) in the efflux transport at the inner blood-retinal barrier (BRB). Reverse transcription-polymerase chain reaction analysis showed that rat (r) Oat3 mRNA is expressed in retinal vascular endothelial cells (RVECs), but not rOat1 and rOat2 mRNA. The expression of Oat3 in the retina and human cultured retinal endothelial cells was further confirmed by Western blot analysis.

View Article and Find Full Text PDF

Characterization of the uptake of organic anion transporter (OAT) 1 and OAT3 substrates by human kidney slices.

J Pharmacol Exp Ther

April 2007

Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Tokyo 13-0033, Japan.

The activities of renal multispecific organic anion transporters (OATs) 1 and 3 have not been fully evaluated in human kidneys. In the present study, the uptake of some organic anions was characterized in kidney slices from human intact renal cortical tissues: hOAT1 and hOAT3 substrates [p-aminohippurate (PAH) and 2,4-dichlorophenoxyacetate (2,4-D)] and hOAT3 substrates [benzylpenicillin (PCG), dehydroepiandrosterone sulfate (DHEAS), and estrone sulfate (ES)]. Despite large inter-batch differences, hOAT1 and hOAT3 mRNA levels correlated well, and there was a good correlation between the uptake of PAH and PCG by kidney slices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!