Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents.

J Biol Chem

Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.

Published: June 2003

The C-terminal region (cA) of the major autolysin AcmA of Lactococcus lactis contains three highly similar repeated regions of 45 amino acid residues (LysM domains), which are separated by nonhomologous sequences. The cA domain could be deleted without destroying the cell wall-hydrolyzing activity of the enzyme in vitro. This AcmA derivative was capable neither of binding to lactococcal cells nor of lysing these cells while separation of the producer cells was incomplete. The cA domain and a chimeric protein consisting of cA fused to the C terminus of MSA2, a malaria parasite surface antigen, bound to lactococcal cells specifically via cA. The fusion protein also bound to many other Gram-positive bacteria. By chemical treatment of purified cell walls of L. lactis and Bacillus subtilis, peptidoglycan was identified as the cell wall component interacting with cA. Immunofluorescence studies showed that binding is on specific locations on the surface of L. lactis, Enterococcus faecalis, Streptococcus thermophilus, B. subtilis, Lactobacillus sake, and Lactobacillus casei cells. Based on these studies, we propose that LysM-type repeats bind to peptidoglycan and that binding is hindered by other cell wall constituents, resulting in localized binding of AcmA. Lipoteichoic acid is a candidate hindering component. For L. lactis SK110, it is shown that lipoteichoic acids are not uniformly distributed over the cell surface and are mainly present at sites where no MSA2cA binding is observed.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M211055200DOI Listing

Publication Analysis

Top Keywords

cell wall
16
peptidoglycan binding
8
hindered cell
8
wall constituents
8
lactococcal cells
8
cell
7
binding
6
cells
5
wall attachment
4
attachment distributed
4

Similar Publications

Surfactant chemistry can affect the phenolic foam (PF) properties by controlling the collision and combination of the created bubbles during foam production. The study was accomplished using two surfactant families, nonionic: polysorbate (Tween80) and anionic: sodium and ammonium lauryl sulfates (SLS30 and ALS70) and sodium laureth sulfate (SLES270) to manufacture PF foams. Tween80 and SLS30 resulted in foams with the lowest and highest densities, 20.

View Article and Find Full Text PDF

In recent years, attempts were made to develop biomaterials using synthetic and natural polymers to induce osteogenesis of human mesenchymal stem cells (hMSCs). Poly(ε-caprolactone) (PCL) is one of the few synthetic polymers with the potential to differentiate hMSCs to bone. However, its potential is limited, attributed to its low strength; its fast crystallization rate also compromises its dimensional stability.

View Article and Find Full Text PDF

Heterocyclic chemistry gathered a wide audience due to their presence in potential drug candidates and being attractive synthons initiating several retro-syntheses the organic as well as in medicinal chemistry fields. Among them, azetidinones have been a subject of discussion due to their serendipity, curiosity, versatility by Penicillin and Cephalosporins as β-lactam antibiotics. Despite possessing a large margin of biological activities, azetidinones mainly work as antimicrobial, interfering with bacterial cell-wall synthesis blocking transpeptidase.

View Article and Find Full Text PDF

Naa50 regulates ovule and embryo sac development in Arabidopsis.

Plant Cell Rep

January 2025

College of Life Sciences, Shanxi Normal University, Taiyuan, 031002, Shanxi, China.

N-terminal acetyltransferase Naa50 plays an important regulatory role in ovule development by indirectly promoting cell wall invertase 2/4 expression.

View Article and Find Full Text PDF

Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions.

Lab Chip

January 2025

Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.

A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!