Repeated brief seizures evoked by kindling progressively increase seizure susceptibility and eventually induce spontaneous seizures. Previous studies have demonstrated that the initial seizures evoked by kindling increase paired-pulse inhibition at 15-25 msec interpulse intervals in the dentate gyrus and also induce apoptosis, progressive neuronal loss, mossy fiber sprouting, and neurogenesis, which could potentially alter the balance of excitation and/or inhibition and modify functional properties of hippocampal circuits. In these experiments, paired-pulse inhibition in the dentate gyrus was reduced or lost after approximately 90-100 evoked seizures in association with emergence of spontaneous seizures. Evoked IPSCs examined by single electrode voltage-clamp methods in granule cells from kindled rats experiencing spontaneous seizures demonstrated altered kinetics (reductions of approximately 48% in 10-90% decay time, approximately 40% in tau, and approximately 65% in charge transfer) and confirmed that decreased inhibition contributed to the reduced paired-pulse inhibition. The loss of inhibition was accompanied by loss of subclasses of inhibitory interneurons labeled by cholecystokinin and the neuronal GABA transporter GAT-1, which project axo-somatic and axo-axonic GABAergic inhibitory terminals to granule cells and axon initial segments. Seizure-induced loss of interneurons providing axo-somatic and axo-axonic inhibition may regulate spike output to pyramidal neurons in CA3 and could play an important role in generation of spontaneous seizures. The sequence of progressive cellular alterations induced by repeated seizures, particularly loss of GABAergic interneurons providing axo-somatic and axo-axonic inhibition, may be important in the development of intractable epilepsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742074PMC
http://dx.doi.org/10.1523/JNEUROSCI.23-07-02759.2003DOI Listing

Publication Analysis

Top Keywords

spontaneous seizures
20
repeated seizures
12
seizures evoked
12
paired-pulse inhibition
12
axo-somatic axo-axonic
12
inhibition
9
seizures
9
seizures loss
8
induced repeated
8
kindled rats
8

Similar Publications

Traumatic cerebrospinal fluid (CSF) leakage from skull base fractures increases the risk of bacterial meningitis, which is associated with a high mortality rate in adults, and commonly results in severe neurological outcomes. While most cases of CSF leakage occur within three months post-injury and generally resolve spontaneously, delayed-onset meningitis remains a challenging complication. Herein, we report a rare case of severe bacterial meningitis with an intraventricular abscess one year following a frontal skull base fracture, despite no CSF leak.

View Article and Find Full Text PDF

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF

Regulation of Glutamate Transporter Type 1 by TSA and the Antiepileptic Mechanism of TSA.

Neurochem Res

January 2025

Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.

Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.

View Article and Find Full Text PDF

Dapagliflozin ameliorates Lafora disease phenotype in a zebrafish model.

Biomed Pharmacother

January 2025

IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy.

Lafora disease (LD) is an ultra-rare and still incurable neurodegenerative condition. Although several therapeutic strategies are being explored, including gene therapy, there are currently no treatments that can alleviate the course of the disease and slow its progression. Recently, gliflozins, a series of SGLT2 transporter inhibitors approved for use in type 2 diabetes mellitus, heart failure and chronic kidney disease, have been proposed as possible repositioning drugs for the treatment of LD.

View Article and Find Full Text PDF

Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!