How glutamate regulates dopamine (DA) release in striatum has been a controversial issue. Here, we resolve this by showing that glutamate, acting at AMPA receptors, inhibits DA release by a nonclassic mechanism mediated by hydrogen peroxide (H(2)O(2)). Moreover, we show that GABA(A)-receptor activation opposes this process, thereby enhancing DA release. The influence of glutamate and GABA on DA release was assessed in striatal slices using carbon-fiber microelectrodes and fast-scan cyclic voltammetry. Modulation by both transmitters was prevented by H(2)O(2)-metabolizing enzymes. In addition, the influence of GABA(A)-receptor activation was lost when AMPA receptors were blocked with GYKI-52466. Together, these data show that modulation of DA release by glutamate and GABA depends on H(2)O(2) generated downstream from AMPA receptors. This is the first evidence that endogenous glutamate can lead to the generation of reactive oxygen species under physiological conditions. We also show that inhibition of DA release by H(2)O(2) is mediated by sulfonylurea-sensitive K(+) channels: tolbutamide blocked DA modulation by glutamate and by GABA. The absence of ionotropic glutamate or GABA receptors on DA terminals indicates that modulatory H(2)O(2) is generated in non-DA cells. Thus, in addition to its known excitatory actions in striatum, glutamate mediates inhibition by generating H(2)O(2) that must diffuse from postsynaptic sites to inhibit presynaptic DA release via K(+)-channel opening. These findings have significant implications not only for normal striatal function but also for understanding disease states that involve DA and oxidative stress, including disorders as diverse as Parkinson's disease and schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742066PMC
http://dx.doi.org/10.1523/JNEUROSCI.23-07-02744.2003DOI Listing

Publication Analysis

Top Keywords

glutamate gaba
16
ampa receptors
12
release
8
dopamine release
8
release striatum
8
glutamate
8
gabaa-receptor activation
8
h2o2 generated
8
h2o2
6
glutamate-dependent inhibition
4

Similar Publications

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.

Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT).

View Article and Find Full Text PDF

The medial habenula (MHb)-interpeduncular nucleus (IPN) pathway plays an important role in information transferring between the forebrain and the midbrain. The MHb-IPN pathway has been implicated in the regulation of fear behavior and nicotine addiction. The synapses between the ventral MHb and the IPN show a unique property, i.

View Article and Find Full Text PDF

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!