Voltage-gated Ca(2+) channels formed by subunits (class D Ca(2+) channels) tightly regulate neurotransmitter release from cochlear inner hair cells (IHCs) by controlling the majority of depolarisation-induced Ca(2+) entry. We have recently shown that the absence of these channels can cause deafness and degeneration of outer hair cells (OHCs) and IHCs in alpha1D-deficient mice (alpha1D(-/-)) (Platzer et al., 2000. Cell 102, 89-97). We investigated the time-dependent patterns of degeneration during postnatal development in the alpha1D(-/-) mouse cochlea using light and electron microscopy. At postnatal day 3 (P3), electron microscopy revealed no morphological aberrations in sensory cells, in afferent as well as in efferent nerve endings. But at P7 we observed a beginning degeneration of afferent nerve fibres by electron microscopy. By P15, we found a loss of OHCs in apical turns but electron microscopy revealed no ultrastructural changes in IHCs and efferent axons as compared to C57 black control animals (C57BL). We demonstrated by serial ultrathin sectioning of 15 days old alpha1D(-/-) mice that intact efferent nerve fibres formed direct contacts with IHCs as the degeneration of afferent nerve fibres progressed. We also saw a notable degeneration of spiral ganglion cells at P15. By 8 months, nearly all spiral ganglion and sensory cells of the organ of Corti were absent. Random ultrathin sectioning gave the impression that synaptic bodies abundant in wild-type animals were absent in nearly all alpha1D(-/-) mice investigated. We conclude that besides presumably reduced synaptic bodies the absence of class D L-type Ca(2+) channels does not prevent morphological development of the cochlea until P3 but may cause cochlear degeneration thereafter. The observed pattern of degeneration involves afferent nerve fibres (P7) followed by cell bodies in the spiral ganglion (P15), OHCs (P15) and IHCs (after P15).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-5955(03)00054-6 | DOI Listing |
Arch Pharm (Weinheim)
January 2025
European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.
The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
This study analysed the influence of montelukast (MON), a cysteinyl leukotriene receptor antagonist, and nifedipine, an L-type voltage-gated Ca2+ channel blocker, on the contractility of the porcine uterine smooth muscle. Myometrial strips were collected from the sexually immature (n=8), cyclic (12-14 days of the oestrous cycle; n=8) and pregnant (27-28 days of pregnancy; n=8) gilts and stimulated with a) MON or nifedipine at concentrations of 10-8-10-4 M and b) increasing concentrations of nifedipine after previous administration of MON at a concentration of 10-4 M. The changes in the tension, amplitude and frequency of contractions were determined with the Hugo Sachs Elektronik equipment for measuring isometric contractions.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Biochemistry, Cell Biology and Microbiology, Mari State University, 424001 Yoshkar-Ola, Russia.
Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.
Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.
Stem Cells Int
December 2024
State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, China.
Transient receptor potential ankyrin 1 (TRPA1) molecule is an important type of transient receptor potential (TRP) cation channels, which can cause extracellular Ca to flow into cells after activation. TRPA1 plays an important role in acute and chronic pain, inflammation, kidney disease, cough and asthma, osteoarthritis, cardiovascular disease, obesity, diabetes, and other diseases. In this study, the expression of interleukin (IL)-1, IL-6, and IL-8 in periodontal ligament stem cells (PDLSCs) treated by lipopolysaccharide (LPS) and the effect of LPS on PDLSCS proliferation were detected.
View Article and Find Full Text PDFFundam Res
November 2024
Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
Astrocytes, characterized by complex spongiform morphology, participate in various physiological processes, and abnormal changes in their calcium (Ca) signaling are implicated in central nervous system disorders. However, medications targeting the control of Ca have fallen short of the anticipated therapeutic outcomes in clinical applications. This underscores the fact that our comprehension of this intricate regulation of calcium ions remains considerably incomplete.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!